Robust methods for detecting hidden periodicity
in models with additive non-Gaussian noise

Agnieszka Wytomanska®

co-authors: Wojciech Zutawiriski®, Jerome Antoni3, Radostaw Zimroz?

'Faculty of Pure and Applied Mathematics
2Faculty of Geoengineering, Mining and Geology
Wroctaw University of Science and Technology, Poland
3INSA Lyon, LVA, UR677, 69621 Villeurbanne, France

Chapel Hill, North Carolina, USA, March 14, 2025



Agenda

@ Introduction
@ Periodically correlated time series with non-Gaussian additive
noise
@ Robust coherent and incoherent statistics in application
to local damage detection problem
o Coherent/incoherent statistics
e Robust coherent/incoherent statistics
o Robust coherent/incoherent statistics applied to signals in
time-frequency representation (spectrogram)
e Application to simulated and real signals
o Robust estimators of autocorrelation function in
application to local damage detection problem
e Cyclic spectral coherence
o Robust estimation of the autocorrelation function (ACF)
e Robust spectral coherence maps
e Application to simulated and real signals

@ Summary



Introduction |

@ We tackle the challenge of identifying hidden periodicity in
signals that display periodic correlation while being influenced
by non-Gaussian noise.

@ This situation arises frequently across various fields.

e Traditional methods for detecting periodically correlated (PC)
behavior typically rely on analyses in either the time domain
or the frequency domain.

@ In our study, we adopt these methods as well but introduce
robust alternatives to the classical estimators for the
autocovariance function and the discrete Fourier transform.

@ Building on these techniques, we develop robust versions of
widely used statistical methods initially designed to detect
hidden periodicity in pure PC models.



Introduction I

@ In our research we examined two types PC models and two
types of non-Gaussian additive noise.

@ Detecting hidden periodicity under non-Gaussian noise is
considerably more complex than in standard cases.

@ Using Monte Carlo simulations, we validate the proposed
robust methods, demonstrating their effectiveness and
superiority over traditional approaches.

@ To further support our conclusions, we analyze real datasets
where hidden periodicity has been previously confirmed in the
literature.

@ The vibration-based condition monitoring serves a key
inspiration for our research.



Periodically correlated time series with additive noise |

We consider the following model, called periodically correlated
model with additive noise

Yt:Xt+Zt7 tGZ,

where {X:} is a periodically correlated (PC) time series (random
sequence) with period T € N*, and {Z;} is the additive noise
(AN). We assume that {Z;} is a stationary time series with a
non-Gaussian distribution that is independent of {X;}.

The time series {X;} is periodically correlated (or second-order
cyclostationary) if its mean and autocovariance functions are
periodic in t with the same period T

EXt = EXt+T, COV(Xt,Xt+h) = COV(Xt+T7Xt+h+T)7 h € Z.



Periodically correlated time series with additive noise |l

o PC model 1
Xt = S(t) + £t7
where {;:} is the sequence of Gaussian N(0, 1) independent

identically distributed (i.i.d.) random variables. The function
s(t) is a periodic function.

e PC model 2 (PAR(p) model)
Xt - ¢1(t)Xt—1 e T (bp(t)xt—p = gfa

where the {{;} is a sequence of i.i.d. random variables from
N(0,1) distribution. The parameter sequences

{#i(t), i =1,...,p} are periodic with the same period

T € N* with respect to t.



Periodically correlated time series with additive noise Il

e AN model 1
Zy = AcKe, Ar € U(0,a).
{K:} is an i.i.d. sequence of the following distribution
P(Ky=1)=P(K: = —1) = q/2, P(K:=0)=1—q.
e AN model 2
Zi — 0121 — oo — bpZi—p = &,

where the {{;} is a sequence of i.i.d. random variables with
symmetric a—stable distribution defined via the characteristic
function

() = Eexp {iez} = exp(—0°I2]%),  z€R,

where a € (0,2] — stability index, 0 > 0 — scale parameter.
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We consider the following setups of presented PC models (with
period T = 8) and additive noise:
o PC model 1 (later denoted as PC1): s(t) = 1+ sin (37t),
gt ~ N(Oa )

e PC model 2 (PC2): PAR(1) model with ¢1(1) = —0.6,
$1(2) = 1.7, $1(3) = 0.9, ¢1(4) = —0.4, $1(5) = 0.8,
91(6) = —0.8, 91(7) = 0.7, ¢1(8) = —0.2, & ~ N(0,1),

@ AN model 1 (AN1): a =60, g = 0.005,
o AN model 2 (AN2): AR(1) model with ¢; = 0.2, a = 1.8,

oc=1.



Periodically correlated time series with additive noise
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Figure: Sample trajectories of PC1 (left column) and PC2 (right column)
time series: without additive noise (top row), and with additive noise
from AN1 (middle row) and AN2 (bottom row) models.



Robust coherent and
incoherent statistics in
application to local damage
detection problem



Introduction

@ The coherent and incoherent statistics are classical tools for
the detection of periodic behaviour, which is a key part of
many local damage detection procedures.

@ However, standard methods tend to fail if the signal of
interest is disturbed by heavy-tailed non-Gaussian noise
(which might be a case in real data).

@ Hence, we propose robust versions of coherent and incoherent
statistics (based on the M-Fourier transform).

@ Moreover, we consider their application to signals represented
in time-frequency domain (spectrograms) to create robust
coherent/incoherent statistic maps.

@ The presented methodology is applied to simulated and real
signals.



Coherent /incoherent statistics [1, 2]

For signal X = [X1,..., Xn], the sample coherence is defined as:
K— 1 T V2
I(w k Hw k
(P, )P = e oo g g <,
>k I/(wp+k)| >0 H(wark)l
where /(w1), ..., /(wn) is the discrete Fourier transform from X,

and K is the smoothness coefficient (hyperparameter).

Using the sample coherence, let us define for 0 < d < N:
@ coherent statistic:

6C(d) = |’7(0’ d, N)|2

@ incoherent statistic (for specified K):

L
0i(d) = ==Y 1(pK,pK+d, K)]> (L= [(N-1-d)/K])



Robust coherent/incoherent statistics |

@ The coherent/incoherent statistics are sensitive to outliers.
o ldea: replace the Fourier transform with its robust version.

@ Here, we use the modification based on the M-regression [3].
Fourier transform as a linear regression problem:
Hwy) = N/2(BLj — iP2g) J=1,....N,

where the coefficients 3; = [1, B2]' are

Bj = argmin
BJERZ

NZ_l (X — C'rﬁj)2]

r=0

for €, = [cos(2rras), sin(2rre)



Robust coherent/incoherent statistics I

@ Key step: replace the least squares cost function with a more
robust one (here: Huber function)

/2, Xl < e -
p(x) = , € — tuning constant
(x| = ¢/2), x| >¢

To obtain a more robust version of the Fourier transform, we set:
N—1
Bj = argmin | > p (X, — C/8))/s) |,
BjER? r=0
and use obtained values to calculate /(wj).

In robust coherent/incoherent statistics, we use the above
robust version of /(w;) in the sample coherence formula.
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Figure: Analyzed periodicity detection statistics calculated for PC1+AN1
and PC1+AN?2 trajectories. The cyclic d € D = {90, 180,270,360} are
marked with red dashed lines.
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Figure: Analyzed periodicity detection statistics calculated for PC2+AN1
and PC2+AN2 trajectories. The cyclic d € D = {90, 180,270,360} are
marked with red dashed lines.



Robust coh. /incoh. statistics for signals in t-f domain

To construct bi-frequency maps for the periodicity detection using
robust coh./incoh. statistics, we use the following algorithm:

@ construct the spectrogram S(t, f): time-frequency
representation of the data

S(t,f) = |STFT(t, f)|?,

where STFT(t, f) is the short-time Fourier transform of given
signal STFT(t, f) = SN X,w(t — n) exp(—2rifn/N), with
w(t — n) is a shifted window of length N,,.
o for each f:
o take S¢ = [S(t1,f),...,S(tn, f)]: spectrogram row for f
o from S¢, for €min < € < €max (modulation frequency),

calculate 0¢(d) (coherent) or d;(d) (incoherent), setting
d = ety.
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Signal 1: signal simulated from the model PC 14+AN 2
Xe = s(t) + Zt,

where s(t) - cyclic impulses, called the signal of interest (SOI). We
assume a specific form of s(t), which is composed of a series of
individual impulses located in time with a given period T = 1/f,
where f¢ is a fault frequency. A single impulse may be specified as
a decaying harmonic oscillation of the following form

h(t) = Bsin (2rf.t)e %, t>0

B is the amplitude, f. is the carrier frequency (related to the
structural resonance in the machine). We assume: fault frequency
fr = 30 Hz, amplitude B = 45, informative frequency band

f- = 3500 — 6500 Hz.

{Z:} — sequence of i.i.d. random variables from symmetric
a-stable distribution (with o = 1.7,0 = 3).
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Signal 2: real vibration signal from a (healthy) crushing machine
with added cyclic impulses s(t) (of amplitude B = 0.25).

Both signals consist of L = 50000 observations (sampling
frequency 25000 Hz, 2 seconds).

Figure: The exemplary crushing machine in the copper ore mine.
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Application to simulated and real signals V
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Robust estimators of
autocorrelation function in
application to local damage
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Introduction

@ Many local damage detection procedures are based on the
periodicity detection methods which utilize the autocorrelation
function (ACF) and its standard estimator (sample ACF).

@ However, classical methods may fail if the signal of interest is
disturbed by heavy-tailed non-Gaussian noise.

@ Hence, we propose to use robust ACF estimators in periodicity
detection algorithms.

@ Here, we consider robust modification of the spectral
coherence map [4].

@ The presented methodology is applied to simulated and real
signals.



Cyclic spectral coherence |

Frequency-frequency domain analysis — spectral coherence map
Iv(f,€)]? (e = cycle frequency) [4, 6, 7]

Definition (Cyclic spectral coherence)

For a finite-variance process {X;}, cyclic spectral coherence is
defined as follows

. |SX(f76)|2
V(f,€) = Sx(f +€/2,0)Sx(f — €/2,0)’

where

N

: 1 G —i2nfT ,—i2mwet
Sx(f,ﬁ): lim N Z Z RX(t,T)e €

N—oo
t=—NT1T=—0

for Rx(t,7) = EX¢X:_ being the autocovariance function of
process {X:}, and € is the cycle frequency.

_——— ==



Cyclic spectral coherence Il

In practice, there are several ways to estimate the spectral
coherence, e.g. the averaged cyclic periodogram (ACP) method.
As a result, we obtain a bi-frequency map. Classical CSC map is
constructed with methods that use the sample ACVF which is very
sensitive to outliers.



Example: ACF in presence of outliers
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Example of standard and robust ACF estimation for AR(1) sample
without (top) and with additive outliers (bottom).



Robust ACF estimators [5]

Estimation of (Pearson) correlation between centered* vectors
— (!l w2 N —(wl w2 Y.
wi = (wy,wi, - ,wy') and wo = (wy, ws, -+, W' ):

@ (non-robust) sample ACF (numerator: sample ACVF)

NZ 1W1W2
7\/21 1 Wl I 1(W2i)2

@ trimmed estimator with parameter 0 < ¢ < 0.5 (trimm)

Mi (w1, w2)

W3 = (W:):’l, W:%?"' ’WZ’{V) (W11W217W12W227"' W1NW2N)

v"vk:{wli i=1,...,N; W3(g) < W§< Wénngrl)}? k=12

O i)

where (w; — ordered ws, g = |c- N|

‘Mzc(W17W2) = Ml(VNVL‘KQ)‘

*note: centering is usually done by subtracting the sample mean in non-robust and sample median in robust
methods



Robust ACF estimators

o Kendall correlation:

prewrowe) = s S0 sen((wf — wh)(wj — )

1<i<j<N

Ms (w1, wp) = sin <7er(V\211,W2)>

@ Spearman correlation:
(r1, ro — zero-mean vectors of ranks for wy, wy)

N
r r
s(wi,wp) 211" = My (ry,r2)

\/Z, ()220 1(’£)2

2
M4(W1,W2) — sin < 7Tp5(W]_,W2)>

6




a-stable distribution and covariation [6]

e Symmetric a-stable distribution S(«, o) has infinite variance
for a < 2 and reduces to Gaussian distribution for o = 2.

@ For two random variables 51, S, from symm. a-stable
distribution (v > 1), we define the normalized covariation of
S5, onS; as

E(S15gn(52))

NCV(S1, %) = —“e

Estimation of NCV of centered vectors wj and wy (sample
NCV):
>0y wisgn(wj)

N -
Zi:l ‘W2'|

A(wy,wo) =



Robust spectral coherence maps |

Algorithm 2 Robust spectral coherence for a signal X = zy,...,zp,.

e © - element-wise multiplication of vectors

o X[index] = [Xindex, s - - - » Xindex, ), where index = [indexq, .. ., index,]
1: Set M(-,-) - selected robust covariance/correlation estimator
2: Set w(-) - window function of length n
3: Set nfft - number of sampling points to calculate DFT
4: Set nover - size of overlap

5: Set €min, €max — minimal and maximal modulation frequency

6:t=1[0,1,...,N—1]

7: for k < €min 10 €max do

s K= | M

[ Xk =X @ eimht

10 YP=X@e i

1: index = [1,...,n]

12: for i<+ 1to K do

13: X" = w® X*[index]

14: Y% = w® YF[index]

15: for j < 1 to nfft do

16: i) = DTF Ty (5, X™)

17: Yo (4,4) = DTF o (4, V™)

18: end for

19: index = index + (n — nover)

20: end for

21: for j < 1 to nfft do

» Sx(fys ) = M(Yaly )y XuG 1))
23: end for

24: Calculate robust spectral coherence |yx (f;, ex)|?

25: end for




Robust spectral coherence maps |l

Calculation of robust ACF/ACVF estimators for complex inputs:

@ For two complex-valued random variables £, = R1 + $1j and
&H = o + %2] we have

E&& = E(RiR2) — E(S132) + [E(R192) + E(S1R2)))

We obtain four real expectations where each can be estimated
by the trimmed ACVF.
@ In the Kendall method, we use sgn(z) = z/|z| for z € C

@ For the Spearman estimator, we set

pS(Wla W2) = Ml(rRe(wl) + rIm(wl).j7 YRe(wy) + rlm(w;)j)v

where rre(w;) and fiym(w;) are zero-mean vectors of ranks of
respectively real and imaginary parts of vector w;, i = 1,2.
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@ Signal 1: signal simulated from the model PC 14+AN 2

Xe =s(t)+ Z;

o s(t) - cyclic impulses
o fault frequency fr = 30 Hz, amplitude B = 45
o informative frequency band f. = 3500 — 6500 Hz

o {Z,} — sequence of i.i.d. random variables from symmetric
a-stable distribution (with « = 1.7,0 = 3).

@ Signal 2: real vibration signal from a (healthy) crushing
machine with added cyclic impulses s(t) (of amplitude
B = 0.25).

@ Both signals consist of L = 50000 observations (sampling
frequency 25000 Hz, 2 seconds).
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sample ACVF sample NCV
03 i
¥ ¥ 10000 0.04
> 02 > 0.03
2 o 2
] 11 g 0.02
g i 01 g
= I e 0.01
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
« frequency [Hz] « frequency [Hz]
trimm (c=0.015) iz trimm (c=0.025)
¥ 01 = 0.08
) )
> 0.08 > 0.06
2 0.06 e
El El 004
g 0.04 z
b= 0.02 = 0.02
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
¢ frequency [Hz] ¢ frequency [Hz]
Kendall <103 Spearman <103
- 10 = 10
B 8 B
> - 8
9 6 9
2 2 6
& ]
s 4 o 4
g g
= 2 hat 2
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
« frequency [Hz] e frequency [Hz]

Spectral coherence maps |y(f,¢)|? for Signal 1.



Application to simulated and real signals |ll
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To compare the values of periodic impulses (in f. band) with the
noise on the map, we calculate amplitude ratio for each ¢

2
Ry = D

17l

where |y(fe, €)|? is the mean of map values in . band for ¢, and

|v|? is the mean of all map values.

For an evaluation of the map, we consider the following indicator:

Ze cyclic R”/(E)
2 Ryle)

Ty =
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Values of 7, calculated for Signal 2 with different amplitudes B of
added cyclic impulses.
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Summary

@ In this work, we presented the application of robust
approaches for hidden periodicity detection when dealing with
PC models with non-Gaussian additive noise.

We present two approaches, (1) where the robust Fourier
transform is used in the coherent/incoherent statistics
calculation and (2) where the robust estimators of ACF are
used in the cyclic spectral coherence map.

The proposed approach outperfrmes classical (non-robust)
methods when non-Gaussian behaviour is present in the
analyzed signal.

In practice, such behaviour may occur due to specific
processes conducted by the machine (e.g. cutting, crushing,
drilling).

Our current research extends the methodology presented by
the introduction of new health indices (HI) (based on robust
maps) that allow tracking of progressing damage, [9].



References |

@ H. L. Hurd, N. L. Gerr, Graphical methods for determining the presence of
periodic correlation, Journal of Time Series Analysis 12, 337-350, 1991

@ E. Broszkiewicz-Suwaj, A. Makagon, R. Weron, A. Wylomariska, On detecting
and modeling periodic correlation in financial data, Physica A 336, 196-205, 2004

@ A. J. Q. Sarnaglia, V. A. Reisen, P. Bondon, C. Levy-Leduc, M-regression
spectral estimator for periodic ARMA models. An empirical investigation,
Stochastic Environmental Research and Risk Assessment 35, 653-664, 2021

@ W. Zutawinski, J. Antoni, R. Zimroz, A. Wylomarnska, Applications of robust
statistics for cyclostationarity detection in non-Gaussian signals for local damage
detection in bearings, Mechanical Systems and Signal Processing 214, 111367,
2024

@ A. Durre, R. Fried, T. Liboschik, Robust estimation of (partial) autocorrelation,
WIREs Computational Statistics 7 (3), 205-222, 2015.

@ P. Kruczek, R. Zimroz, J. Antoni, A. Wytomariska, Generalized spectral
coherence for cyclostationary signals with a-stable distribution, Mechanical
Systems and Signal Processing 159, 107737, 2021.

@ J. Antoni, Cyclic spectral analysis in practice, Mechanical Systems and Signal
Processing 21 (2), 597-630, 2007.



References |l

@ W. Zutawinski, J. Antoni, R. Zimroz, A. Wytomarnska, Robust coherent and

B

incoherent statistics for detection of hidden periodicity in models with

non-Gaussian additive noise, EURASIP Journal on Advances in Signal Processing
71, 2024

D. Kuzio, R. Zimroz, A. Wytomariska: Methodology for health indicators design
based on distributions’ distance measures applied to robust CSC maps.
Application to non-Gaussian vibration-based fault detection., submitted, 2025



Thank you for your attention!



