
Robust methods for detecting hidden periodicity
in models with additive non-Gaussian noise

Agnieszka Wy lomańska1
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Introduction I

We tackle the challenge of identifying hidden periodicity in
signals that display periodic correlation while being influenced
by non-Gaussian noise.

This situation arises frequently across various fields.

Traditional methods for detecting periodically correlated (PC)
behavior typically rely on analyses in either the time domain
or the frequency domain.

In our study, we adopt these methods as well but introduce
robust alternatives to the classical estimators for the
autocovariance function and the discrete Fourier transform.

Building on these techniques, we develop robust versions of
widely used statistical methods initially designed to detect
hidden periodicity in pure PC models.



Introduction II

In our research we examined two types PC models and two
types of non-Gaussian additive noise.

Detecting hidden periodicity under non-Gaussian noise is
considerably more complex than in standard cases.

Using Monte Carlo simulations, we validate the proposed
robust methods, demonstrating their effectiveness and
superiority over traditional approaches.

To further support our conclusions, we analyze real datasets
where hidden periodicity has been previously confirmed in the
literature.

The vibration-based condition monitoring serves a key
inspiration for our research.



Periodically correlated time series with additive noise I

We consider the following model, called periodically correlated
model with additive noise

Yt = Xt + Zt , t ∈ Z,

where {Xt} is a periodically correlated (PC) time series (random
sequence) with period T ∈ N∗, and {Zt} is the additive noise
(AN). We assume that {Zt} is a stationary time series with a
non-Gaussian distribution that is independent of {Xt}.
The time series {Xt} is periodically correlated (or second-order
cyclostationary) if its mean and autocovariance functions are
periodic in t with the same period T

EXt = EXt+T , cov(Xt ,Xt+h) = cov(Xt+T ,Xt+h+T ), h ∈ Z.



Periodically correlated time series with additive noise II

PC model 1
Xt = s(t) + ξt ,

where {ξt} is the sequence of Gaussian N (0, 1) independent
identically distributed (i.i.d.) random variables. The function
s(t) is a periodic function.

PC model 2 (PAR(p) model)

Xt − ϕ1(t)Xt−1 − ...− ϕp(t)Xt−p = ξt ,

where the {ξt} is a sequence of i.i.d. random variables from
N (0, 1) distribution. The parameter sequences
{ϕi (t), i = 1, ..., p} are periodic with the same period
T ∈ N∗ with respect to t.



Periodically correlated time series with additive noise III

AN model 1

Zt = AtKt , At ∈ U(0, a).

{Kt} is an i.i.d. sequence of the following distribution

P(Kt = 1) = P(Kt = −1) = q/2, P(Kt = 0) = 1 − q.

AN model 2

Zt − ϕ̃1Zt−1 − ...− ϕ̃pZt−p = ξt ,

where the {ξt} is a sequence of i.i.d. random variables with
symmetric α−stable distribution defined via the characteristic
function

Φ(z) = E exp {iξtz} = exp (−σα|z |α), z ∈ R,

where α ∈ (0, 2] – stability index, σ > 0 – scale parameter.



Periodically correlated time series with additive noise IV

We consider the following setups of presented PC models (with
period T = 8) and additive noise:

PC model 1 (later denoted as PC1): s(t) = 1 + sin
(

1
4πt

)
,

ξt ∼ N (0, 1),

PC model 2 (PC2): PAR(1) model with ϕ1(1) = −0.6,
ϕ1(2) = 1.7, ϕ1(3) = 0.9, ϕ1(4) = −0.4, ϕ1(5) = 0.8,
ϕ1(6) = −0.8, ϕ1(7) = 0.7, ϕ1(8) = −0.2, ξt ∼ N (0, 1),

AN model 1 (AN1): a = 60, q = 0.005,

AN model 2 (AN2): AR(1) model with ϕ̃1 = 0.2, α = 1.8,
σ = 1.



Periodically correlated time series with additive noise V
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Figure: Sample trajectories of PC1 (left column) and PC2 (right column)
time series: without additive noise (top row), and with additive noise
from AN1 (middle row) and AN2 (bottom row) models.



Robust coherent and
incoherent statistics in

application to local damage
detection problem



Introduction

The coherent and incoherent statistics are classical tools for
the detection of periodic behaviour, which is a key part of
many local damage detection procedures.

However, standard methods tend to fail if the signal of
interest is disturbed by heavy-tailed non-Gaussian noise
(which might be a case in real data).

Hence, we propose robust versions of coherent and incoherent
statistics (based on the M-Fourier transform).

Moreover, we consider their application to signals represented
in time-frequency domain (spectrograms) to create robust
coherent/incoherent statistic maps.

The presented methodology is applied to simulated and real
signals.



Coherent/incoherent statistics [1, 2]

For signal X = [X1, . . . ,XN ], the sample coherence is defined as:

|γ(p, q,K )|2 =
|
∑K−1

k=0 I (ωp+k)I (ωq+k)|2∑K−1
k=0 |I (ωp+k)|2

∑K−1
k=0 |I (ωq+k)|2

, 0 < p, q ≤ N,

where I (ω1), . . . , I (ωN) is the discrete Fourier transform from X,
and K is the smoothness coefficient (hyperparameter).

Using the sample coherence, let us define for 0 < d < N:

coherent statistic:

δC (d) = |γ(0, d ,N)|2

incoherent statistic (for specified K ):

δI (d) =
1

L + 1

L∑
p=0

|γ(pK , pK +d ,K )|2 (L = [(N−1−d)/K ])



Robust coherent/incoherent statistics I

The coherent/incoherent statistics are sensitive to outliers.

Idea: replace the Fourier transform with its robust version.

Here, we use the modification based on the M-regression [3].

Fourier transform as a linear regression problem:

I (ωj) = N/2(β̂1,j − i β̂2,j) j = 1, . . . ,N,

where the coefficients β̂j = [β̂1,j , β̂2,j ]
′ are

β̂j = argmin
βj∈R2

[
N−1∑
r=0

(
Xr − C′

rβj
)2

]

for Cr = [cos(2πrωj), sin(2πrωj)]′.



Robust coherent/incoherent statistics II

Key step: replace the least squares cost function with a more
robust one (here: Huber function)

ρ(x) =

{
x2/2, |x | ≤ c

c(|x | − c/2), |x | > c
, c − tuning constant

To obtain a more robust version of the Fourier transform, we set:

β̂j = argmin
βj∈R2

[
N−1∑
r=0

ρ
(
(Xr − C′

rβj)/s
)]

,

and use obtained values to calculate I (ωj).

In robust coherent/incoherent statistics, we use the above
robust version of I (ωj) in the sample coherence formula.



Robust coherent/incoherent statistics III
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Figure: Analyzed periodicity detection statistics calculated for PC1+AN1
and PC1+AN2 trajectories. The cyclic d ∈ D = {90, 180, 270, 360} are
marked with red dashed lines.



Robust coherent/incoherent statistics IV
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Figure: Analyzed periodicity detection statistics calculated for PC2+AN1
and PC2+AN2 trajectories. The cyclic d ∈ D = {90, 180, 270, 360} are
marked with red dashed lines.



Robust coh./incoh. statistics for signals in t-f domain

To construct bi-frequency maps for the periodicity detection using
robust coh./incoh. statistics, we use the following algorithm:

construct the spectrogram S(t, f ): time-frequency
representation of the data

S(t, f ) = |STFT(t, f )|2,

where STFT(t, f ) is the short-time Fourier transform of given
signal STFT(t, f ) =

∑N−1
n=0 Xnw(t − n) exp(−2πifn/N), with

w(t − n) is a shifted window of length Nw .

for each f :

take Sf = [S(t1, f ), . . . ,S(tN , f )]: spectrogram row for f

from Sf , for ϵmin ≤ ϵ ≤ ϵmax (modulation frequency),
calculate δC (d) (coherent) or δI (d) (incoherent), setting
d = ϵtN .



Application to simulated and real signals I

Signal 1: signal simulated from the model PC 1+AN 2

Xt = s(t) + Zt ,

where s(t) - cyclic impulses, called the signal of interest (SOI). We
assume a specific form of s(t), which is composed of a series of
individual impulses located in time with a given period T = 1/ff ,
where ff is a fault frequency. A single impulse may be specified as
a decaying harmonic oscillation of the following form

h(t) = B sin (2πfct)e−dt , t ≥ 0

B is the amplitude, fc is the carrier frequency (related to the
structural resonance in the machine). We assume: fault frequency
ff = 30 Hz, amplitude B = 45, informative frequency band
fc = 3500 − 6500 Hz.
{Zt} – sequence of i.i.d. random variables from symmetric
α-stable distribution (with α = 1.7, σ = 3).



Application to simulated and real signals II

Signal 2: real vibration signal from a (healthy) crushing machine
with added cyclic impulses s(t) (of amplitude B = 0.25).
Both signals consist of L = 50000 observations (sampling
frequency 25000 Hz, 2 seconds).

Figure: The exemplary crushing machine in the copper ore mine.



Application to simulated and real signals III
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Figure: Signal 1 and its spectrogram.



Application to simulated and real signals IV
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Figure: Signal 2 and its spectrogram.



Application to simulated and real signals V
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Application to simulated and real signals VI
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Application to non-periodic signals I
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Application to non-periodic signals II
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Robust estimators of
autocorrelation function in
application to local damage

detection problem



Introduction

Many local damage detection procedures are based on the
periodicity detection methods which utilize the autocorrelation
function (ACF) and its standard estimator (sample ACF).

However, classical methods may fail if the signal of interest is
disturbed by heavy-tailed non-Gaussian noise.

Hence, we propose to use robust ACF estimators in periodicity
detection algorithms.

Here, we consider robust modification of the spectral
coherence map [4].

The presented methodology is applied to simulated and real
signals.



Cyclic spectral coherence I

Frequency-frequency domain analysis – spectral coherence map
|γ(f , ϵ)|2 (ϵ – cycle frequency) [4, 6, 7]

Definition (Cyclic spectral coherence)

For a finite-variance process {Xt}, cyclic spectral coherence is
defined as follows

γ(f , ϵ) =
|SX (f , ϵ)|2

SX (f + ϵ/2, 0)SX (f − ϵ/2, 0)
,

where

SX (f , ϵ) = lim
N→∞

1

N

N∑
t=−N

∞∑
τ=−∞

RX (t, τ)e−i2πf τe−i2πϵt

for RX (t, τ) = EXtXt−τ being the autocovariance function of
process {Xt}, and ϵ is the cycle frequency.



Cyclic spectral coherence II

In practice, there are several ways to estimate the spectral
coherence, e.g. the averaged cyclic periodogram (ACP) method.
As a result, we obtain a bi-frequency map. Classical CSC map is
constructed with methods that use the sample ACVF which is very
sensitive to outliers.



Example: ACF in presence of outliers

Example of standard and robust ACF estimation for AR(1) sample
without (top) and with additive outliers (bottom).



Robust ACF estimators [5]

Estimation of (Pearson) correlation between centered* vectors
w1 = (w1

1 ,w
2
1 , · · · ,wN

1 ) and w2 = (w1
2 ,w

2
2 , · · · ,wN

2 ):

(non-robust) sample ACF (numerator: sample ACVF)

M1(w1,w2) =
1
N

∑N
i=1 w

i
1w

i
2

1
N

√∑N
i=1(w i

1)2
∑N

i=1(w i
2)2

trimmed estimator with parameter 0 ≤ c < 0.5 (trimm)

w3 = (w1
3 ,w

2
3 , · · · ,wN

3 ) = (w1
1w

1
2 ,w

2
1w

2
2 , · · · ,wN

1 wN
2 )

w̃k = {w i
k : i = 1, . . . ,N; w

(g)
3 < w i

3 < w
(n−g+1)
3 }, k = 1, 2

where (w
(1)
3 , . . . ,w

(N)
3 ) – ordered w3, g = ⌊c · N⌋

Mc
2 (w1,w2) = M1(w̃1, w̃2)

*note: centering is usually done by subtracting the sample mean in non-robust and sample median in robust
methods



Robust ACF estimators

Kendall correlation:

ρK (w1,w2) =
2

N(N − 1)

∑
1≤i≤j≤N

sgn((w i
1 − w j

1)(w i
2 − w j

2))

M3(w1,w2) = sin

(
πρK (w1,w2)

2

)
Spearman correlation:
(r1, r2 – zero-mean vectors of ranks for w1, w2)

ρS(w1,w2) =

∑N
i=1 r

i
1r

i
2√∑N

i=1(r i1)2
∑N

i=1(r i2)2
= M1(r1, r2)

M4(w1,w2) = sin

(
2πρS(w1,w2)

6

)



α-stable distribution and covariation [6]

Symmetric α-stable distribution S(α, σ) has infinite variance
for α < 2 and reduces to Gaussian distribution for α = 2.

For two random variables S1, S2 from symm. α-stable
distribution (α > 1), we define the normalized covariation of
S1 on S2 as

NCV (S1, S2) =
E(S1 sgn(S2))

E|S2|
.

Estimation of NCV of centered vectors w1 and w2 (sample
NCV):

λ(w1,w2) =

∑N
i=1 w

i
1sgn(w i

2)∑N
i=1 |w i

2|
.



Robust spectral coherence maps I



Robust spectral coherence maps II

Calculation of robust ACF/ACVF estimators for complex inputs:

For two complex-valued random variables ξ1 = ℜ1 + ℑ1j and
ξ2 = ℜ2 + ℑ2j we have

Eξ1ξ
∗
2 = E(ℜ1ℜ2) − E(ℑ1ℑ2) + [E(ℜ1ℑ2) + E(ℑ1ℜ2)]j

We obtain four real expectations where each can be estimated
by the trimmed ACVF.

In the Kendall method, we use sgn(z) = z/|z | for z ∈ C
For the Spearman estimator, we set

ρS(w1,w2) = M1(rRe(w1) + rIm(w1)j , rRe(w2) + rIm(w2)j),

where rRe(wi) and rIm(wi) are zero-mean vectors of ranks of
respectively real and imaginary parts of vector wi , i = 1, 2.



Application to simulated and real signals I

Signal 1: signal simulated from the model PC 1+AN 2

Xt = s(t) + Zt

s(t) - cyclic impulses

fault frequency ff = 30 Hz, amplitude B = 45
informative frequency band fc = 3500− 6500 Hz

{Zt} – sequence of i.i.d. random variables from symmetric
α-stable distribution (with α = 1.7, σ = 3).

Signal 2: real vibration signal from a (healthy) crushing
machine with added cyclic impulses s(t) (of amplitude
B = 0.25).

Both signals consist of L = 50000 observations (sampling
frequency 25000 Hz, 2 seconds).



Application to simulated and real signals II
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Spectral coherence maps |γ(f , ϵ)|2 for Signal 1.



Application to simulated and real signals III
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Spectral coherence maps |γ(f , ϵ)|2 for Signal 2.



Application to simulated and real signals IV

To compare the values of periodic impulses (in fc band) with the
noise on the map, we calculate amplitude ratio for each ϵ

Rγ(ϵ) =
|γ(fc , ϵ)|2

|γ|2
,

where |γ(fc , ϵ)|2 is the mean of map values in fc band for ϵ, and

|γ|2 is the mean of all map values.

For an evaluation of the map, we consider the following indicator:

τγ =

∑
ϵ cyclic Rγ(ϵ)∑ϵmax
ϵ=ϵmin

Rγ(ϵ)



Application to simulated and real signals V
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Amplitude ratios Rγ(ϵ) for Signal 1.



Application to simulated and real signals VI
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Amplitude ratios Rγ(ϵ) for Signal 2.



Application to simulated and real signals VII

{Zt} ∼ S(α, σ = 3)
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Values of τγ calculated for Signal 1 with different {Zt} ∼ S(α, σ)
cases.



Application to simulated and real signals VIII
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Values of τγ calculated for Signal 2 with different amplitudes B of
added cyclic impulses.



Application to non-periodic signals I
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Spectral coherence maps |γ(f , ϵ)|2 for Signal 1 without periodicity.



Application to non-periodic signals II
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Spectral coherence maps |γ(f , ϵ)|2 for Signal 2 without periodicity.



Summary

In this work, we presented the application of robust
approaches for hidden periodicity detection when dealing with
PC models with non-Gaussian additive noise.

We present two approaches, (1) where the robust Fourier
transform is used in the coherent/incoherent statistics
calculation and (2) where the robust estimators of ACF are
used in the cyclic spectral coherence map.

The proposed approach outperfrmes classical (non-robust)
methods when non-Gaussian behaviour is present in the
analyzed signal.

In practice, such behaviour may occur due to specific
processes conducted by the machine (e.g. cutting, crushing,
drilling).

Our current research extends the methodology presented by
the introduction of new health indices (HI) (based on robust
maps) that allow tracking of progressing damage, [9].
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Thank you for your attention!


