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Dear Harry

Thank you for introduction me to PC Sequences.
Thank you for teaching me PC Sequences.
Thank you for several hours of discussion.

Thank you for being a friend to me.



PC Sequences

Stochastic Sequence

A stochastic sequence (SS) is a sequence (x(n)), n € Z, of
elements in a Hilbert space (H, (-.-)).
The auto-covariance function of (x(n)):

R«(m, n) = (x(m), x(n)) m,neZ.

Two sequences with the same auto-covariance function are
identified (unitary equivalent), (x(n)) = (y(n)).

For example

(i.i.d.N(0,1)) ~ (any orthonormal basis) ~ ((1/v27r)e™) C L?(C)



PC Sequences

PC Sequences

A periodically correlated sequence with period T >0, T € Z,
(T-PC) is a SS (x(n)) such that

R«(m,n)=R(m+ T,n+T), mneZ.

x(s)  x{t) X(s+T) x(t+T)

Important parameter of a PC sequence is the sequence

\'

—1
aj(n) == e 2™ /TR (n+r,r), j=0,...,T—1.

i
o



PC Sequences

Structure of PC Sequences

Theorem (Makagon, Miamee, 2014)

(x(n)) in H is T-PC iff there exist a Hilbert space K O H, x € K,
and two unitary operators U, V in K such that

= ) .
x(n) = = e 2min/Tynvix ne Z, (1)
j=0
where
o VI =
o Viyr = e 2t/ Tynyi (CCR condition)

If K =3span{U"Vix : t,j € Z}, then (K, U, V,x) are uniquely
determined by (x(t)) in the sense of unitary equivalence.
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Obvious Corollaries

Since VIU" = e 2mti/Tyn\i and VT = |

T
x(n) — Z —2mijn/ T Un ij]
=0 Xi(n)

T-1
ef2rryn/TVJX

J=0

[Gladyshev, Hurd]
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Unitary representation of a group

Theorem (SNAG Theorem: Stone, Naimark, Ambrose, Godement)

If T8 is a continuous unitary representation of an LCA group G in
H (i.e. TETh = TET"h), then there exists a unique orthogonal
projection-valued measure E(-) on G such that

Tg:/@v(g)E(d’Y), geG

U" and V7 are representations of Z and Zr = {0,1,..., T —1}:

2 . . n—1 .
un = / e_lunE(dU), Vi = Z e—27TIkJ/TPk
0 k=0
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Harmonizability

T-1
1 , .
Recall x(n) = — Z —2mijn/ T yny/i,
0

2T .
Q@ x(n)= e """Z(du)
0 1n 1
Proof: Define Z(du) E(du—2 Vix O
roo efine Z(du) = njz; u—"2mj/n)Vx

2T 27
Q R(m,n):/ / e~ (MU= (dy, dv)

o_Jo
Proof: Define I'(du, dv) = (Z(du), Z(dv)) O
[Gladyshev, Hurd]
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Measure [
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Spectrum of PC Sequence

Theorem (Hurd)

If (x(n)) is PC, then there are measures ~yj, j =0,..., T —1, such
that

T-1 - o )
aj(”) = Z e—IJr27r/TRX(n +r,r)= /0 6_'"”’yj(du).

Proof: Define ;(du) = (E(du)x, Vix) O
Vector measure v(A) = [v0(A), 71(A),...,y7_1(A)] €CT is
called the spectral measure of x(n). If dv = g(u)du, then

g(u) = [go(v), g1(v), ..., gT-1(u)]
is called the density of (x(n))

2w
aj(n) = / e "Mgi(u)du, j=0,...,T -1
0



Stationary Sequences

Univariate Stationary Sequences

A T-PC sequence (x(n)) with T = 1 is called stationary (V = I,
x(n) = U"x(0))

Re(m,n) = Re(m+r,n+r) = Re(m— n,0)

2
Rx(n,O):KX(n):/O e MUF (du)

where Fy is the spectral measure of (x(n)). If (x(n)) is a.c,
Fx << dt then

2
Kx(n):/0 e ™ F(u)du

Any function h such that F(u) = h(u)h(u) = |h(u)|? is called a
transfer function (t.f.) of (x(n)). Then [Kolmogorov|

(x(m) = (e7™h(") € L*(C)
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Predicton Problem

Find t.f. h such that
Q analytic: f(u) = > 2, cke™
@ outer (maximal): _
span{e" f(u) : n >0} =3pan{e™ :n>0} = L(C)
The last condition means

span{x(n): n < m} =3span{&, : n < m}

where (&,) is an innovation. Consequently, if
M, (m) = span{x(n) : n < m}, then the projection

P, (m)(x(0)) = v2r Z cké(—k)
k=m

It is possible to express & in terms of (x(n)).
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T-variate Stationary Sequences

x%(n)
T-variate stationary: x(n) = [xX(n)] = : , xk(n) e H
XT—l(n)
Auto-covariance:  Ky(n) = [(x/(n), x*(0))] = x(n)x(0)*
Spectral measure: Ky(n) = fozﬂ e MF(du), F is matrix measure
A.c. sequence: Ky(n) = fozﬂ e~ F(u)(du), F(-) is nonnegative.

Any T x T matrix function H(-) such that

F(u) = H(u)H(u)*, where H(u)" = H(u)’

is called a transfer function (t.f.) of (x(n)).
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Predicton Problem

If H is a transfer function of (x(n)), then
(x(n)) = (e"™H()) € L*(CT)
H (1)

Interpretation H(t) = [H*"(t)] = :
HT=1:(¢)
Prediction Problem. Find H that is

Q analytic H(u) = Y 3%, Cre'

@ outer span{e’™ H(u) : n <0} = span{e™/ : n < 0}

Prediction Problem can be explicitly solved if coordinates of F(u)
are rational functions.
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Rozanov's Theorem

n(z)

If n(z),d(z) are polynomials, then h(z) = , z€C, is called

d(2)
rational. The function h(e) is then called rational function of
u € [0,27)
1 2 ,
For example cos(u) = z+1/z =7 +Z, if z=1¢"

2 2z

Theorem (Rozanov)

Each a.e. non-negative rational T x T matrix function F(u),

u € [0,27), of rank r can be represented in the form

F(u) = H(e™)H(e")* a.e. where H(z) is rational, analytic and the
rank of H(z) is r for all z inside the open unit circle

Doy = {|z| < 1}, i.e. H(z) has no zeros or poles in Dy

If r = T then H(e™) is outer, and since H(z) is rational,
H(u) = A(z)"1B(z) where A(z) and B(z) are left co-prime matrix
polynomials
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VARMA Systems

Stationary sequences with rational densities are exactly a.c.
stationary solutions to VARMA systems:

ZAx(n— ZBgn i, neZz, (2)
A;, Bj are complex T x T matrices, Ag, AL, Bo, Br # 0, &, = [€X]

is such that (§,’§,§{n) =1if j = k and m = n, and 0 otherwise.
We substitute x(n) = e ™H(-) and §,, = e ™|, Then

Z Aje= (=D H(. Z Bie~(n=i):
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Stationary Solution of VARMA System

Denote Z A(k Z B(k

A t.f. of an a.c. statlonary solution to VARI\/IA system (2) is
H(u) = A(e") ™' B(e")

(if A(e™)~1 exists a.e.). Note that H(u) is rational, so

F(u) = H(u)H(u)* is rational.

OPPOSITE: Rozanov's theorem = if rank of F(u), r = T, one
can find rational, analytic and outer t.f. Ho(u) and hence
polynomial matrices (Ao(z), Bo(z)) with no zeros in D1 such that

F(u) = Ho(u)Ho(u)* and Ho(u) = Ag(e™)1By(e™)

(Ao(z), Bo(z)) is called a VARMA representation (model) for
(x(m)-
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Transfer Function of a PC Sequence

Theorem (Makagon, Miamee 2013)

Let ~ be the spectrum of an a.c T-PC sequence (x(n)). Then
there exist a function h € L?>(CT) such that

gj(u) = h(u)h(u + 2mj/ T)*

forevery j=0,..., T — 1.
The function h has the property that

T_

._n

x(n) ~ e 2T/ T g=int p(y 4 27/ T)

Jj=0

~|\H

s'

-1
1 ; .
Compare with x(n) = T2 e~ 2min/Tynyvix.

.
I
o
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Corresponding T-variate Stationary Sequence

Let x(n) be T-PC

-.x(—1),x(0),x(1),...,x(T —1),x(T),... ,j(2T —1),x(27),...

X(0) X(1)

The T-variate stationary sequence
x(n) = [x(nT),x(nT +1),....,x((n+1)T-1)], neZ

is called the T-variate stationary sequence corresponding to x(n).
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Relations

Theorem (Makagon 2017)
Let h be a tf of( (n)) and H be a t.f. of (x(n)).

Q h(u) = Ze’k“Hk (Tu).

@ Given h defme
T-1
fi(t)=(1/T) Y e 2w/ Dp(t42mj/T), k=0,...,T-1
j=0

fx is 27/ T-periodic, fi(t) = hi(Tt). Then

HK = hy

Relations for densities are also available [Makagon 2017].
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PARMA System

A PARMA system is a system of difference equations

x(n) = =" aj(n)x(n—J +Zb (Mén—jy neZ, (3)

where a;(n), bj(n) € C are T-periodic in n, none of the sequences
(a;(n)), and (b,(n)) are identically zero, and (§,) are orthonormal.
The system above can be written as

/

> " aj(n)x(n - Z bi(n)én_j, n€ Z.

Jj=0
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We arrange a;(t) in a matrix [A; ... Aj Ag] as follows
ar(0) a1(0) ao(0) 0 0
ar+1(1) ... ax(1) ai(1) ao(1) ... 0
A(1) A(0) ... ;
aT(Tfl) 37',1(7_71) ao(Tfl)

and do the same for bj(t)’s defining [Bgr ... B1 By).
Then we can write a PARMA system (3)as VARMA on (x(n))

L

R
ZAJ'X(I‘I —_j) = Z Bjén—ja neZz,
j=0

Jj=0

where (x(n)) and (&,) are T-variate stationary corresponding to

(x(n)) and (&n).
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Given an a.c. T-PC sequence (x(n)) with density g(t). We know:

@ how to connect (x(n)) with the corresponding T-variate
stationary sequence (x(n))

@ how to connect the parameters of (x(n)) and (x(n)), in
particular how to find the density F(t) of (x(n))

@ how to find an analytic t.f. H(t) of (x(n)), if F(t) is rational
Q F(t) is rational iff g(t) is rational
@ how to connect a PARMA system on (x(n)) with a VARMA
system on (x(n))
@ how to solve a VARMA system on (x(n))
Everything is ready study T-PC squences with rational density.
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An Example of Theorem

Theorem (Makagon, 2017)

Suppose that (x(n)) jest T-PC with rational density. Then there is
a PARMA system (A(z), B(z)) such that

@ all zeros of A(z) are outside the disk D<; = {z € C : |z| <1}

@ all zeros of of B(z) are outside the open disk
Doa={zeC:|z| <1}

@ polynomial matrices A(z) and B(z) are left co-prime

© (x(n)) is the only T-PC solution to the system (A(z), B(z))

The system (A(z), B(z)) above is a PARMA representation
(model) of (x(n)).



Applications

Procedure 1: Solving PARMA System

Given PARMA system

/
_Zaj(n)x(n—j)—i— bj(n)fn_j, neZz, (4)
=1

e compute A(z) and B(z), (as above)

o if det(A(z) = 0 for some z of modulus one, then the system
has no unique a.c. T-PC solution;

@ otherwise we compute H(t) = A(e™)"1B(e') ;

o compute h(t) = 2] et HK (Tt);

o compute g/(t) = h(t)h(t +2mj/T)*, j=0,..., T — 1.
The function g(t) = (g°(t),...,g T *(t)) is the density of an a.c
T-PC solution to the PARMA system (4 )



Applications

Procedure 2: Finding PARMA Representation

Given rational density g of a T-PC (x(n))

e compute the density F(t) of (x(n)) [Makagon 2017]

@ use Rozanov to find an analytic t.f. H(t)

o represent H(t) as the quotient H(t) = A(e'*)"1B(e'), where
A(z) and B(z) are left co-prime and have no zeros in the unit
circle D

e adjust A(z) and B(z) so that A(0) and B(0) are left diagonal
and A(0) has ones on the diagonal

Adjusted ((A(z), B(z)) is a PARMA representation of (x(n))

REMARK. Impossible to effectively compute.Several tries were
carried out in analysis of MIMO models in signal processing.



Example of Application

Example

Assume that our data x,, n =0,...,1799, came from a T-PC

b

We guess [?] that a model for this data is

0N

=

s

x(0) = 0.13x(—3)+0.3¢_; + 0.5¢
x(1) = —0.1x(—2)+ 0.26¢_5 + 0.42¢_1 + 0.95¢ + 0.50¢1,
x(2) = —0.32x(—1)+ 0.40¢_1 + 0.21&o + 0.55¢1 + 0.9924¢;

Is this model plausible?
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Example, cont.

We compute the solution to the above system (Procedure 1)

a%e™)
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Example. cont.

We compute the Hurd's periodogram [Hurd, Miamee]

3"
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Example, cont.

We graph them together
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THANK YOU
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