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Dear Harry

Thank you for introduction me to PC Sequences.
Thank you for teaching me PC Sequences.
Thank you for several hours of discussion.
Thank you for being a friend to me.
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Stochastic Sequence

A stochastic sequence (SS) is a sequence (x(n)), n ∈ Z , of
elements in a Hilbert space (H, (·.·)).
The auto-covariance function of (x(n)):

Rx(m, n) = (x(m), x(n)) m, n ∈ Z .

Two sequences with the same auto-covariance function are
identified (unitary equivalent), (x(n)) ≈ (y(n)).

For example

(i .i .d .N(0, 1)) ≈ (any orthonormal basis) ≈ ((1/
√

2π)e in·) ⊆ L2(C)
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PC Sequences

A periodically correlated sequence with period T > 0, T ∈ Z,
(T-PC) is a SS (x(n)) such that

Rx(m, n) = Rx(m + T , n + T ), m, n ∈ Z .

Important parameter of a PC sequence is the sequence

aj(n) :=
T−1∑
r=0

e−2πijr/TRx(n + r , r), j = 0, . . . ,T − 1.
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Structure of PC Sequences

Theorem (Makagon, Miamee, 2014)

(x(n)) in H is T-PC iff there exist a Hilbert space K ⊇ H, x ∈ K,
and two unitary operators U, V in K such that

x(n) =
1

T

T−1∑
j=0

e−2πijn/TUnV jx , n ∈ Z , (1)

where

V T = I

V jUn = e−2πitj/TUnV j (CCR condition)

If K = span{UnV jx : t, j ∈ Z}, then (K,U,V , x) are uniquely
determined by (x(t)) in the sense of unitary equivalence.
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Obvious Corollaries

Since V jUn = e−2πitj/TUnV j and V T = I

x(n) =
1

T

T−1∑
j=0

e−2πijn/T
[
UnV jx

]︸ ︷︷ ︸
X j (n)

= Un

 1

T

T−1∑
j=0

e−2πijn/TV jx


︸ ︷︷ ︸

p(n)

=

 1

T

T−1∑
j=0

V j


︸ ︷︷ ︸

P0

(Unx)

[Gladyshev, Hurd]
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Unitary representation of a group

Theorem (SNAG Theorem: Stone, Naimark, Ambrose, Godement)

If T g is a continuous unitary representation of an LCA group G in
H (i.e. T g+h = T gT h), then there exists a unique orthogonal
projection-valued measure E (·) on Ĝ such that

T g =

∫
Ĝ
γ(g)E (dγ), g ∈ G

Un and V j are representations of Z and ZT = {0, 1, . . . ,T − 1}:

Un =

∫ 2π

0
e−iunE (du), V j =

n−1∑
k=0

e−2πikj/TPk
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Harmonizability

Recall x(n) =
1

T

T−1∑
j=0

e−2πijn/TUnV jx .

1 x(n) =

∫ 2π

0
e−iunZ (du)

Proof: Define Z (du) =
1

n

n−1∑
j=0

E (du − 2πj/n)V jx �

2 R(m, n) =

∫ 2π

0

∫ 2π

0
e−i(mu−nv)Γ(du, dv)

Proof: Define Γ(du, dv) = (Z (du),Z (dv)) �

[Gladyshev, Hurd]
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Measure Γ
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Spectrum of PC Sequence

Theorem (Hurd)

If (x(n)) is PC, then there are measures γj , j = 0, . . . ,T − 1, such
that

aj(n) =
T−1∑
r=0

e−ijr2π/TRx(n + r , r) =

∫ 2π

0
e−inuγj(du).

Proof: Define γj(du) = (E (du)x ,V jx) �
Vector measure γ(∆) = [γ0(∆), γ1(∆), . . . , γT−1(∆)] ∈ CT is
called the spectral measure of x(n). If dγ = g(u)du, then

g(u) = [g0(u), g1(u), . . . , gT−1(u)]

is called the density of (x(n))

aj(n) =

∫ 2π

0
e−inugj(u)du, j = 0, . . . ,T − 1
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Univariate Stationary Sequences

A T -PC sequence (x(n)) with T = 1 is called stationary (V = I ,
x(n) = Unx(0))

Rx(m, n) = Rx(m + r , n + r) = Rx(m − n, 0)

Rx(n, 0) = Kx(n) =

∫ 2π

0
e−inuFx(du)

where Fx is the spectral measure of (x(n)). If (x(n)) is a.c,
Fx << dt then

Kx(n) =

∫ 2π

0
e−inuF (u)du

Any function h such that F (u) = h(u)h(u) = |h(u)|2 is called a
transfer function (t.f.) of (x(n)). Then [Kolmogorov]

(x(n)) ≈ (e−in·h(·)) ∈ L2(C)
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Predicton Problem

Find t.f. h such that

1 analytic: f (u) =
∑∞

k=0 cke iku

2 outer (maximal):
span{e in·f (u) : n ≥ 0} = span{e in· : n ≥ 0} = L+(C)

The last condition means

span{x(n) : n ≤ m} = span{ξn : n ≤ m}

where (ξn) is an innovation. Consequently, if
Mx(m) = span{x(n) : n ≤ m}, then the projection

PMx (m)(x(0)) =
√

2π
∞∑

k=m

ckξ(−k)

It is possible to express ξk in terms of (x(n)).
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T-variate Stationary Sequences

T -variate stationary: x(n) = [xk(n)] =

 x0(n)
...

xT−1(n)

, xk(n) ∈ H

Auto-covariance: Kx(n) = [(x j(n), xk(0))] = x(n)x(0)∗

Spectral measure: Kx(n) =
∫ 2π
0 e−inuF(du), F is matrix measure

A.c. sequence: Kx(n) =
∫ 2π
0 e−inuF (u)(du), F (·) is nonnegative.

Any T × T matrix function H(·) such that

F (u) = H(u)H(u)∗, where H(u)∗ = H(u)′

is called a transfer function (t.f.) of (x(n)).
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Predicton Problem

If H is a transfer function of (x(n)), then

(x(n)) ≈ (e−in·H(·)) ∈ L2(CT )

Interpretation H(t) = [Hk,·(t)] =

 H0,·(t)
...

HT−1,·(t)


Prediction Problem. Find H that is

1 analytic H(u) =
∑∞

k=0 Cke iku

2 outer span{e in·H(u) : n ≤ 0} = span{e in·I : n ≤ 0}

Prediction Problem can be explicitly solved if coordinates of F (u)
are rational functions.
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Rozanov’s Theorem

If n(z), d(z) are polynomials, then h(z) =
n(z)

d(z)
, z ∈ C, is called

rational. The function h(e iu) is then called rational function of
u ∈ [0, 2π)

For example cos(u) =
z + 1/z

2
=

z2 + z

2z
, if z = e iu

Theorem (Rozanov)

Each a.e. non-negative rational T × T matrix function F (u),
u ∈ [0, 2π), of rank r can be represented in the form
F (u) = H(e iu)H(e iu)∗ a.e. where H(z) is rational, analytic and the
rank of H(z) is r for all z inside the open unit circle
D<1 = {|z | < 1}, i.e. H(z) has no zeros or poles in D<1

If r = T then H(e iu) is outer, and since H(z) is rational,
H(u) = A(z)−1B(z) where A(z) and B(z) are left co-prime matrix
polynomials
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VARMA Systems

Stationary sequences with rational densities are exactly a.c.
stationary solutions to VARMA systems:

L∑
j=0

Ajx(n − j) =
R∑
j=0

Bjξn−j , n ∈ Z, (2)

Aj , Bj are complex T × T matrices, A0,AL,B0,BR 6= 0, ξn = [ξkn ]

is such that (ξkn , ξ
j
m) = 1 if j = k and m = n, and 0 otherwise.

We substitute x(n) = e−in·H(·) and ξn = e−in·I . Then

L∑
j=0

Aje
−i(n−j)·H(·) =

R∑
j=0

Bje
−i(n−j)·I

,

e−in·

 L∑
j=0

Aje
ij ·

H(·) = e−in·

 R∑
j=0

Bje
ij ·

 I
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Stationary Solution of VARMA System

Denote A(z) =
L∑

k=0

A(k)zk , B(z) =
R∑

k=0

B(k)zk

A t.f. of an a.c. stationary solution to VARMA system (2) is

H(u) = A(e iu)−1B(e iu)

(if A(e iu)−1 exists a.e.). Note that H(u) is rational, so
F (u) = H(u)H(u)∗ is rational.

OPPOSITE: Rozanov’s theorem ⇒ if rank of F (u), r = T , one
can find rational, analytic and outer t.f. H0(u) and hence
polynomial matrices (A0(z),B0(z)) with no zeros in D<1 such that
F (u) = H0(u)H0(u)∗ and H0(u) = A0(e iu)−1B0(e iu)

(A0(z),B0(z)) is called a VARMA representation (model) for
(x(n)).
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Transfer Function of a PC Sequence

Theorem (Makagon, Miamee 2013)

Let γ be the spectrum of an a.c T-PC sequence (x(n)). Then
there exist a function h ∈ L2(CT ) such that

gj(u) = h(u)h(u + 2πj/T )∗

for every j = 0, . . . ,T − 1.
The function h has the property that

x(n) ≈ f (n)(u) =
1

T

T−1∑
j=0

e−2πijn/T e−inuh(u + 2πj/T )

Compare with x(n) =
1

T

T−1∑
j=0

e−2πijn/TUnV jx .



PC Sequences Stationary Sequences PC Sequence Again Applications Example of Application

Corresponding T-variate Stationary Sequence

Let x(n) be T-PC

. . . x(−1), x(0), x(1), . . . , x(T − 1)︸ ︷︷ ︸
X(0)

, x(T ), . . . , x(2T − 1)︸ ︷︷ ︸
X(1)

, x(2T ), . . .

The T -variate stationary sequence

x(n) = [x(nT ), x(nT + 1), . . . , x((n + 1)T − 1)]′, n ∈ Z

is called the T -variate stationary sequence corresponding to x(n).
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Relations

Theorem (Makagon 2017)

Let h be a t.f. of (x(n)) and H be a t.f. of (x(n)).

1 h(u) =
T−1∑
k=0

e ikuHk·(Tu).

2 Given h define

fk(t) = (1/T )
T−1∑
j=0

e−ik(t+2πj/T )h(t+2πj/T ), k = 0, . . . ,T−1.

fk is 2π/T -periodic, fk(t) = hk(Tt). Then

Hk· = hk

Relations for densities are also available [Makagon 2017].
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PARMA System

A PARMA system is a system of difference equations

x(n) = −
l∑

j=1

aj(n)x(n − j) +
r∑

j=0

bj(n)ξn−j , n ∈ Z, (3)

where aj(n), bj(n) ∈ C are T -periodic in n, none of the sequences
(al(n)), and (br (n)) are identically zero, and (ξn) are orthonormal.
The system above can be written as

l∑
j=0

aj(n)x(n − j) =
r∑

j=0

bj(n)ξn−j , n ∈ Z.
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We arrange aj(t) in a matrix [AL . . . A1 A0] as follows . . . aT (0) . . . a1(0) a0(0) 0 . . . 0
. . . aT+1(1) . . . a2(1) a1(1) a0(1) . . . 0
. . . . . . A(1) . . . . . . A(0) . . . . . .
. . . . . . . . . aT (T − 1) aT−1(T − 1) . . . . . . a0(T − 1)

 ,
and do the same for bj(t)’s defining [BR . . . B1 B0].

Then we can write a PARMA system (3)as VARMA on (x(n))

L∑
j=0

Ajx(n − j) =
R∑
j=0

Bjξn−j , n ∈ Z,

where (x(n)) and (ξn) are T -variate stationary corresponding to
(x(n)) and (ξn).
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Recap

Given an a.c. T -PC sequence (x(n)) with density g(t). We know:

1 how to connect (x(n)) with the corresponding T -variate
stationary sequence (x(n))

2 how to connect the parameters of (x(n)) and (x(n)), in
particular how to find the density F (t) of (x(n))

3 how to find an analytic t.f. H(t) of (x(n)), if F (t) is rational

4 F (t) is rational iff g(t) is rational

5 how to connect a PARMA system on (x(n)) with a VARMA
system on (x(n))

6 how to solve a VARMA system on (x(n))

Everything is ready study T -PC squences with rational density.
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An Example of Theorem

Theorem (Makagon, 2017)

Suppose that (x(n)) jest T -PC with rational density. Then there is
a PARMA system (A(z),B(z)) such that

1 all zeros of A(z) are outside the disk D≤1 = {z ∈ C : |z | ≤ 1}
2 all zeros of of B(z) are outside the open disk

D<1 = {z ∈ C : |z | < 1}
3 polynomial matrices A(z) and B(z) are left co-prime

4 (x(n)) is the only T-PC solution to the system (A(z),B(z))

The system (A(z),B(z)) above is a PARMA representation
(model) of (x(n)).
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Procedure 1: Solving PARMA System

Given PARMA system

x(n) = −
l∑

j=1

aj(n)x(n − j) +
r∑

j=0

bj(n)ξn−j , n ∈ Z, (4)

compute A(z) and B(z), (as above)

if det(A(z) = 0 for some z of modulus one, then the system
has no unique a.c. T -PC solution;

otherwise we compute H(t) = A(e it)−1B(e it) ;

compute h(t) =
∑T−1

k=0 e iktHk·(Tt);

compute g j(t) = h(t)h(t + 2πj/T )∗, j = 0, . . . ,T − 1.

The function g(t) = (g0(t), ..., gT−1(t)) is the density of an a.c
T -PC solution to the PARMA system (4 )



PC Sequences Stationary Sequences PC Sequence Again Applications Example of Application

Procedure 2: Finding PARMA Representation

Given rational density g of a T -PC (x(n))

compute the density F (t) of (x(n)) [Makagon 2017]

use Rozanov to find an analytic t.f. H(t)

represent H(t) as the quotient H(t) = A(e it)−1B(e it), where
A(z) and B(z) are left co-prime and have no zeros in the unit
circle D<1

adjust A(z) and B(z) so that A(0) and B(0) are left diagonal
and A(0) has ones on the diagonal

Adjusted ((A(z),B(z)) is a PARMA representation of (x(n))

REMARK. Impossible to effectively compute.Several tries were
carried out in analysis of MIMO models in signal processing.
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Example

Assume that our data xn, n = 0, . . . , 1799, came from a T -PC
(x(n)) with T = 3

We guess [?] that a model for this data is

x(0) = 0.13x(−3) + 0.3ξ−1 + 0.5ξ0
x(1) = −0.1x(−2) + 0.26ξ−2 + 0.42ξ−1 + 0.95ξ0 + 0.50ξ1,
x(2) = −0.32x(−1) + 0.40ξ−1 + 0.21ξ0 + 0.55ξ1 + 0.9924ξ2

Is this model plausible?
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Example, cont.

We compute the solution to the above system (Procedure 1)
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Example. cont.

We compute the Hurd’s periodogram [Hurd, Miamee]
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Example, cont.

We graph them together
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THANK YOU
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