LECTURES ON THE THEORY OF PC SEQUENCES

Andrzej Makagon Hampton University (retired)

Chapel Hill, March 2025

Content

- PC Sequences
- Stationary Sequences
- 3 PC Sequence Again
- 4 Applications
- **5** Example of Application

Dear Harry

Thank you for introduction me to PC Sequences. Thank you for teaching me PC Sequences. Thank you for several hours of discussion. Thank you for being a friend to me.

Stochastic Sequence

A stochastic sequence (SS) is a sequence (x(n)), $n \in Z$, of elements in a Hilbert space $(\mathcal{H}, (\cdot, \cdot))$.

The auto-covariance function of (x(n)):

$$R_x(m,n)=(x(m),x(n))$$
 $m,n\in Z.$

Two sequences with the same auto-covariance function are identified (unitary equivalent), $(x(n)) \approx (y(n))$.

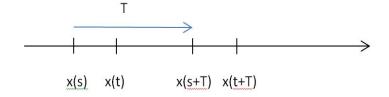
For example

$$(i.i.d.N(0,1)) pprox (ext{any orthonormal basis}) pprox ((1/\sqrt{2\pi})e^{in\cdot}) \subseteq L^2(\mathcal{C})$$

PC Sequences

A periodically correlated sequence with period T>0, $T\in\mathcal{Z}$, (T-PC) is a SS (x(n)) such that

$$R_{\mathsf{x}}(m,n) = R_{\mathsf{x}}(m+T,n+T), \quad m,n \in \mathsf{Z}.$$



Important parameter of a PC sequence is the sequence

$$a_j(n) := \sum_{n=0}^{T-1} e^{-2\pi i j r/T} R_x(n+r,r), \qquad j=0,\ldots,T-1.$$

Structure of PC Sequences

Theorem (Makagon, Miamee, 2014)

(x(n)) in \mathcal{H} is T-PC iff there exist a Hilbert space $\mathcal{K}\supseteq\mathcal{H}$, $x\in\mathcal{K}$, and two unitary operators U,V in \mathcal{K} such that

$$x(n) = \frac{1}{T} \sum_{j=0}^{T-1} e^{-2\pi i j n/T} U^n V^j x, \quad n \in \mathbb{Z},$$
 (1)

where

$$V^T = I$$

•
$$V^{j}U^{n} = e^{-2\pi i t j/T} U^{n} V^{j}$$
 (CCR condition)

If $K = \overline{span}\{U^nV^jx : t, j \in Z\}$, then (K, U, V, x) are uniquely determined by (x(t)) in the sense of unitary equivalence.

Obvious Corollaries

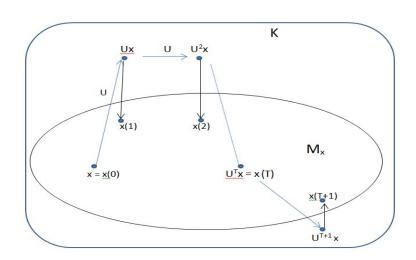
Since
$$V^j U^n = e^{-2\pi i t j/T} U^n V^j$$
 and $V^T = I$

$$x(n) = \frac{1}{T} \sum_{j=0}^{T-1} e^{-2\pi i j n/T} \underbrace{\left[U^n V^j x\right]}_{X^j(n)}$$

$$= U^n \underbrace{\left[\frac{1}{T} \sum_{j=0}^{T-1} e^{-2\pi i j n/T} V^j x\right]}_{p(n)}$$

$$= \underbrace{\left[\frac{1}{T} \sum_{j=0}^{T-1} V^j\right]}_{p(n)} (U^n x)$$

[Gladyshev, Hurd]



Theorem (SNAG Theorem: Stone, Naimark, Ambrose, Godement)

If T^g is a continuous unitary representation of an LCA group G in \mathcal{H} (i.e. $T^{g+h}=T^gT^h$), then there exists a unique orthogonal projection-valued measure $E(\cdot)$ on \hat{G} such that

$$T^g = \int_{\hat{G}} \gamma(g) E(d\gamma), \quad g \in G$$

 U^n and V^j are representations of Z and $Z_T = \{0, 1, \dots, T-1\}$:

$$U^{n} = \int_{0}^{2\pi} e^{-iun} E(du), \qquad V^{j} = \sum_{k=0}^{n-1} e^{-2\pi i k j/T} P_{k}$$

Recall $x(n) = \frac{1}{T} \sum_{i=1}^{T-1} e^{-2\pi i j n/T} U^n V^j x$.

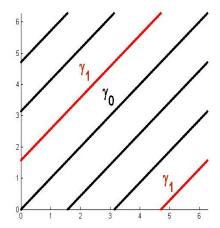
$$x(n) = \int_0^{2\pi} e^{-iun} Z(du)$$

Proof: Define
$$Z(du) = \frac{1}{n} \sum_{i=0}^{n-1} E(du - 2\pi j/n) V^j x \square$$

$$R(m,n) = \int_0^{2\pi} \int_0^{2\pi} e^{-i(mu-nv)} \Gamma(du,dv)$$
Proof: Define $\Gamma(du,dv) = (Z(du),Z(dv))$

[Gladyshev, Hurd]

Measure Γ



Spectrum of PC Sequence

Theorem (Hurd)

If (x(n)) is PC, then there are measures γ_j , $j=0,\ldots,T-1$, such that

$$a_j(n) = \sum_{r=0}^{T-1} e^{-ijr2\pi/T} R_x(n+r,r) = \int_0^{2\pi} e^{-inu} \gamma_j(du).$$

Proof: Define $\gamma_j(du) = (E(du)x, V^j x) \square$ Vector measure $\gamma(\Delta) = [\gamma_0(\Delta), \gamma_1(\Delta), \dots, \gamma_{T-1}(\Delta)] \in \mathcal{C}^T$ is called the *spectral measure* of x(n). If $d\gamma = g(u)du$, then

$$g(u) = [g_0(u), g_1(u), \dots, g_{T-1}(u)]$$

is called the *density* of (x(n))

$$a_{j}(n) = \int_{0}^{2\pi} e^{-inu} g_{j}(u) du, \quad j = 0, \dots, T-1$$

Univariate Stationary Sequences

A T-PC sequence (x(n)) with T=1 is called *stationary* $(V=I, x(n) = U^n x(0))$

$$R_x(m, n) = R_x(m + r, n + r) = R_x(m - n, 0)$$

$$R_{x}(n,0) = K_{x}(n) = \int_{0}^{2\pi} e^{-inu} F_{x}(du)$$

where F_x is the spectral measure of (x(n)). If (x(n)) is a.c., $F_x << dt$ then

$$K_{\mathsf{x}}(n) = \int_0^{2\pi} e^{-inu} F(u) du$$

Any function h such that $F(u) = h(u)\overline{h(u)} = |h(u)|^2$ is called a transfer function (t.f.) of (x(n)). Then [Kolmogorov]

$$(x(n)) \approx (e^{-in\cdot}h(\cdot)) \in L^2(\mathcal{C})$$

Predicton Problem

Find t.f. h such that

- **1** analytic: $f(u) = \sum_{k=0}^{\infty} c_k e^{iku}$
- outer (maximal): $\overline{span}\{e^{in\cdot}f(u):n\geq 0\}=\overline{span}\{e^{in\cdot}:n\geq 0\}=L_+(\mathcal{C})$

The last condition means

$$\overline{span}\{x(n):n\leq m\}=\overline{span}\{\xi_n:n\leq m\}$$

where (ξ_n) is an innovation. Consequently, if $M_x(m) = \overline{span}\{x(n) : n \le m\}$, then the projection

$$P_{M_x(m)}(x(0)) = \sqrt{2\pi} \sum_{k=m}^{\infty} c_k \xi_{(-k)}$$

It is possible to express ξ_k in terms of (x(n)).

T-variate Stationary Sequences

T-variate stationary:
$$\mathbf{x}(n) = \begin{bmatrix} x^{k}(n) \\ \vdots \\ x^{T-1}(n) \end{bmatrix}$$
, $x^{k}(n) \in \mathcal{H}$

Auto-covariance: $K_{\mathbf{x}}(n) = [(x^j(n), x^k(0))] = \mathbf{x}(n)\mathbf{x}(0)^*$ Spectral measure: $K_{\mathbf{x}}(n) = \int_0^{2\pi} e^{-inu}\mathbf{F}(du)$, \mathbf{F} is matrix measure A.c. sequence: $K_{\mathbf{x}}(n) = \int_{0}^{2\pi} e^{-inu} F(u)(du)$, $F(\cdot)$ is nonnegative.

Any $T \times T$ matrix function $H(\cdot)$ such that

$$F(u) = H(u)H(u)^*$$
, where $H(u)^* = \overline{H(u)'}$

is called a transfer function (t.f.) of $(\mathbf{x}(n))$.

Predicton Problem

If H is a transfer function of $(\mathbf{x}(n))$, then

$$(\mathbf{x}(n)) \approx (e^{-in\cdot}H(\cdot)) \in L^2(\mathcal{C}^T)$$

Interpretation
$$H(t) = [H^{k,\cdot}(t)] = \begin{bmatrix} H^{0,\cdot}(t) \\ \vdots \\ H^{T-1,\cdot}(t) \end{bmatrix}$$

Prediction Problem. Find H that is

- **1** analytic $H(u) = \sum_{k=0}^{\infty} C_k e^{iku}$
- ② outer $\overline{span}\{e^{in\cdot}H(u):n\leq 0\}=\overline{span}\{e^{in\cdot}I:n\leq 0\}$

Prediction Problem can be explicitly solved if coordinates of F(u)are rational functions.

Rozanov's Theorem

If n(z), d(z) are polynomials, then $h(z) = \frac{n(z)}{d(z)}$, $z \in \mathcal{C}$, is called rational. The function $h(e^{iu})$ is then called rational function of $u \in [0, 2\pi)$

For example
$$cos(u) = \frac{z + 1/z}{2} = \frac{z^2 + z}{2z}$$
, if $z = e^{iu}$

Theorem (Rozanov)

Each a.e. non-negative rational $T \times T$ matrix function F(u), $u \in [0, 2\pi)$, of rank r can be represented in the form $F(u) = H(e^{iu})H(e^{iu})^*$ a.e. where H(z) is rational, analytic and the rank of H(z) is r for all z inside the open unit circle $D_{<1} = \{|z| < 1\}$, i.e. H(z) has no zeros or poles in $D_{<1}$

If r = T then $H(e^{iu})$ is outer, and since H(z) is rational, $H(u) = A(z)^{-1}B(z)$ where A(z) and B(z) are left co-prime matrix polynomials

VARMA Systems

Stationary sequences with rational densities are <u>exactly</u> a.c. stationary solutions to VARMA systems:

$$\sum_{j=0}^{L} A_j \mathbf{x}(n-j) = \sum_{j=0}^{R} B_j \xi_{n-j}, \quad n \in \mathcal{Z},$$
 (2)

 A_j , B_j are complex $T \times T$ matrices, $A_0, A_L, B_0, B_R \neq 0$, $\xi_n = [\xi_n^k]$ is such that $(\xi_n^k, \xi_m^j) = 1$ if j = k and m = n, and 0 otherwise. We substitute $\mathbf{x}(n) = e^{-in \cdot} H(\cdot)$ and $\xi_n = e^{-in \cdot} I$. Then

$$\sum_{j=0}^{L} A_j e^{-i(n-j)\cdot} H(\cdot) = \sum_{j=0}^{R} B_j e^{-i(n-j)\cdot} I$$

$$e^{-in\cdot}\left(\sum_{j=0}^L A_j e^{ij\cdot}\right) H(\cdot) = e^{-in\cdot}\left(\sum_{j=0}^R B_j e^{ij\cdot}\right) I$$

Stationary Solution of VARMA System

Denote
$$A(z) = \sum_{k=0}^{L} A(k)z^{k}, \quad B(z) = \sum_{k=0}^{R} B(k)z^{k}$$

A t.f. of an a.c. stationary solution to VARMA system (2) is

$$H(u) = A(e^{iu})^{-1}B(e^{iu})$$

(if $A(e^{iu})^{-1}$ exists a.e.). Note that H(u) is rational, so $F(u) = H(u)H(u)^*$ is rational.

OPPOSITE: Rozanov's theorem \Rightarrow if rank of F(u), r = T, one can find rational, analytic and outer t.f. $H_0(u)$ and hence polynomial matrices $(A_0(z), B_0(z))$ with no zeros in $D_{<1}$ such that $F(u) = H_0(u)H_0(u)^*$ and $H_0(u) = A_0(e^{iu})^{-1}B_0(e^{iu})$

 $(A_0(z), B_0(z))$ is called a VARMA representation (model) for $(\mathbf{x}(n)).$

Theorem (Makagon, Miamee 2013)

Let γ be the spectrum of an a.c T-PC sequence (x(n)). Then there exist a function $h \in L^2(\mathcal{C}^T)$ such that

$$g_j(u) = h(u)h(u + 2\pi j/T)^*$$

for every $j = 0, \ldots, T - 1$.

The function h has the property that

$$x(n) \approx f(n)(u) = \frac{1}{T} \sum_{j=0}^{T-1} e^{-2\pi i j n/T} e^{-inu} h(u + 2\pi j/T)$$

Compare with
$$x(n) = \frac{1}{T} \sum_{j=0}^{T-1} e^{-2\pi i j n/T} U^n V^j x$$
.

Corresponding T-variate Stationary Sequence

Let x(n) be T-PC

$$\dots \times (-1), \underbrace{\times (0), \times (1), \dots, \times (T-1)}_{\mathbf{X}(0)}, \underbrace{\times (T), \dots, \times (2T-1)}_{\mathbf{X}(1)}, \times (2T), \dots$$

The *T*-variate stationary sequence

$$\mathbf{x}(n) = [x(nT), x(nT+1), \dots, x((n+1)T-1)]', n \in \mathbb{Z}$$

is called the T-variate stationary sequence corresponding to x(n).

Relations

Theorem (Makagon 2017)

Let h be a t.f. of (x(n)) and H be a t.f. of (x(n)).

@ Given h define

$$f_k(t) = (1/T) \sum_{j=0}^{T-1} e^{-ik(t+2\pi j/T)} h(t+2\pi j/T), \quad k=0,\ldots,T-1.$$

$$f_k$$
 is $2\pi/T$ -periodic, $f_k(t) = h_k(Tt)$. Then

$$H^{k\cdot} = h_k$$

Relations for densities are also available [Makagon 2017].

PARMA System

A PARMA system is a system of difference equations

$$x(n) = -\sum_{j=1}^{l} a_j(n)x(n-j) + \sum_{j=0}^{r} b_j(n)\xi_{n-j}, \quad n \in \mathcal{Z}, \quad (3)$$

where $a_j(n), b_j(n) \in \mathcal{C}$ are T-periodic in n, none of the sequences $(a_l(n))$, and $(b_r(n))$ are identically zero, and (ξ_n) are orthonormal. The system above can be written as

$$\sum_{i=0}^{l} a_j(n)x(n-j) = \sum_{i=0}^{r} b_j(n)\xi_{n-j}, \quad n \in \mathcal{Z}.$$

We arrange $a_j(t)$ in a matrix $[A_L \ldots A_1 A_0]$ as follows

and do the same for $b_j(t)$'s defining $[B_R \ldots B_1 \ B_0]$.

Then we can write a PARMA system (3)as VARMA on $(\mathbf{x}(n))$

$$\sum_{j=0}^{L} A_j \mathbf{x}(n-j) = \sum_{j=0}^{R} B_j \xi_{n-j}, \quad n \in \mathcal{Z},$$

where $(\mathbf{x}(n))$ and (ξ_n) are T-variate stationary corresponding to $(\mathbf{x}(n))$ and (ξ_n) .

Recap

Given an a.c. T-PC sequence (x(n)) with density g(t). We know:

- how to connect (x(n)) with the corresponding T-variate stationary sequence (x(n))
- ② how to connect the parameters of (x(n)) and (x(n)), in particular how to find the density F(t) of (x(n))
- **3** how to find an analytic t.f. H(t) of $(\mathbf{x}(n))$, if F(t) is rational
- F(t) is rational iff g(t) is rational
- **o** how to connect a PARMA system on (x(n)) with a VARMA system on $(\mathbf{x}(n))$
- **1** how to solve a VARMA system on (x(n))

Everything is ready study *T*-PC squences with rational density.

An Example of Theorem

Theorem (Makagon, 2017)

Suppose that (x(n)) jest T-PC with rational density. Then there is a PARMA system (A(z), B(z)) such that

- **1** all zeros of A(z) are outside the disk $D_{\leq 1} = \{z \in \mathcal{C} : |z| \leq 1\}$
- ② all zeros of of B(z) are outside the open disk $D_{<1} = \{z \in \mathcal{C} : |z| < 1\}$
- **1** polynomial matrices A(z) and B(z) are left co-prime
- **(**x(n)) is the only T-PC solution to the system (A(z), B(z))

The system (A(z), B(z)) above is a PARMA representation (model) of (x(n)).

Given PARMA system

$$x(n) = -\sum_{j=1}^{l} a_j(n)x(n-j) + \sum_{j=0}^{r} b_j(n)\xi_{n-j}, \quad n \in \mathcal{Z}, \quad (4)$$

- compute A(z) and B(z), (as above)
- if det(A(z) = 0 for some z of modulus one, then the system has no unique a.c. T-PC solution;
- otherwise we compute $H(t) = A(e^{it})^{-1}B(e^{it})$;
- compute $h(t) = \sum_{k=0}^{T-1} e^{ikt} H^{k}(Tt)$;
- compute $g^{j}(t) = h(t)h(t + 2\pi j/T)^{*}, j = 0, ..., T 1.$

The function $g(t) = (g^0(t), ..., g^{T-1}(t))$ is the density of an a.c T-PC solution to the PARMA system (4)

Procedure 2: Finding PARMA Representation

Given rational density g of a T-PC (x(n))

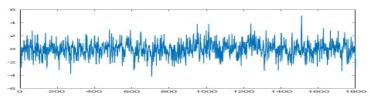
- compute the density F(t) of $(\mathbf{x}(n))$ [Makagon 2017]
- use Rozanov to find an analytic t.f. H(t)
- represent H(t) as the quotient $H(t) = A(e^{it})^{-1}B(e^{it})$, where A(z) and B(z) are left co-prime and have no zeros in the unit circle $D_{<1}$
- adjust A(z) and B(z) so that A(0) and B(0) are left diagonal and A(0) has ones on the diagonal

Adjusted ((A(z), B(z)) is a PARMA representation of (x(n))

REMARK. Impossible to effectively compute. Several tries were carried out in analysis of MIMO models in signal processing.

Example

Assume that our data x_n , n = 0, ..., 1799, came from a T-PC (x(n)) with T = 3



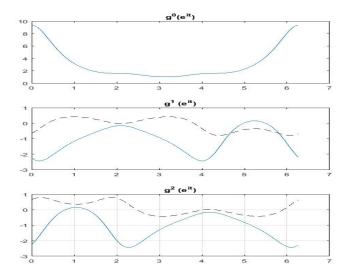
We guess [?] that a model for this data is

$$\begin{array}{rcl} x(0) & = & 0.13x(-3) + 0.3\xi_{-1} + 0.5\xi_{0} \\ x(1) & = & -0.1x(-2) + 0.26\xi_{-2} + 0.42\xi_{-1} + 0.95\xi_{0} + 0.50\xi_{1}, \\ x(2) & = & -0.32x(-1) + 0.40\xi_{-1} + 0.21\xi_{0} + 0.55\xi_{1} + 0.9924\xi_{2} \end{array}$$

Is this model plausible?

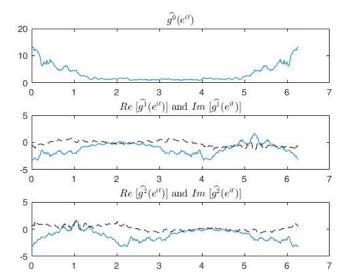
Example, cont.

We compute the solution to the above system (Procedure 1)



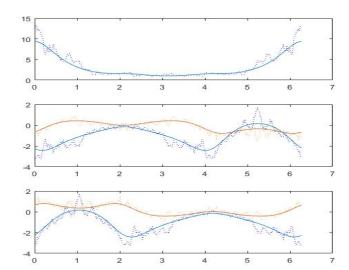
Example. cont.

We compute the Hurd's periodogram [Hurd, Miamee]



Example, cont.

We graph them together



Bibliography

- Gladyshev, E. G. (1961). "Periodically correlated random sequences." Soviet Math. 2 (1961)
- Hurd, H. L.,(1969). "An investigation of periodically correlated stochastic processes." Duke University, Nov. 1969
- Hurd, H. L., Miamee, A.G. (2007) "Periodically Corerlated Random Sequences; Spectral Theory and Practice." John Wiley and Sons, Inc., 2007
- Rozanov, Yu. A.(1967). "Stationary random Processes." Holden-Day, Series in Time Series Analysis, Holsden-Day, 1967

Bibliography

- Makagon, A., and Miamee, A.G. (2013). "Spectral Representation of Periodically Correlated Sequences." *Probability Math. Stat.* 33 (1).
- Makagon, A., and Miamee, A.G. (2014). "Structure of PC Sequences and the 3rd Prediction Problem." in: *Cyclostationarity: Theory and Methods*, Lecture Notes in Mechanical Engineering, Springer 2014.
- Makagon, A.(2017). "Periodically Correlated Sequences with Rational Densities and PARMA Models." *Cyclostationarity:Theory and Methods II*, Lecture Notes in Mechanical Engineering, Springer 2017.

THANK YOU