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by 

H.L.Hurd 

Suppose X(t), t E IR is a second order continuous time complex-valued PC process with period 

T and mean E{X(t)} = O. We may then write 

(1) 
Rx(u,v) = Rx(u+T, v+T) 

for every u, v. 

The purpose of these notes is to sketch some facts about the reproducing kernel Hilbert space 

(RKHS) associated with X. We denote H(X) = sp{X(t), tEIR} as the Hilbert space of the process X 

and H(Rx) = {f: IR--+C, f(t) = E{~X(t)} for E H(X)} is the associated RKHS. The inner product 

on H(Rx) is defined by 

where and f/ correspond to f and g through the definition of H(Rx)· It may be shown that 

(i) Rx( •,t) E H(Rx) V t E IR 

(ii) span{Rx( •,t) tEIR} is dense in H(Rx) 

(iii) <f( · ), Rx( •,t) >u(Rx) = f(t) V f E H(Rx) and V t E IR 

This is the reproducing property. 

(iv) 
H(X) and H(Rx) are isomorphic with X(t,w) +-+ R( •,t) = R(t,·) V t E IR. 

\ \ 

These elementary properties are stated here for convenience. 
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(2) 

We are looking for properties of the elements of H(Rx) that arise from the defining property 



(l) of PC processes We find it h l f l t b · · • , · e P u o egm with two important sub classes of the PC processes. 

Stationary Processes 

Since stationary processes are PC with every period, we first look at the form of H(Rx) for 

stationary processes indexed on the entire real line R. The only feature we currently call attention to 

arises from property (ii); that is 

H(Rx) = sp{Rx(•,t), tEIR} = cl {f(t) = .f a-Rx(t-t.), arbitrary N, t1 ... tN, a1, ... , aN} 
J=l J J 

where cl means closure, in this case with respect to the norm ll·IIH(Rx) induced by <·,·>H(Rx)' In 

words, the elements of H(Rx) are limits of linear combinations of arbitrary translates of Rx(u). 

So f(t) E H(Rx) implies f(t+-r) E H(Rx) for every Tj that is, H(Rx) is closed under arbitrary 

translations. This can be seen in another way. Since X is stationary there exists a one parameter 

group of unitary operators on H(X) defined by UTX(t) = X(t+T). If~ corresponds (1-1) to f(•), then 

we write 

f(t+T) = E{~ X(t+T)} = <~,UTX(t)>H(X) = <U-T~, X(t)>H(X) 
(3) 

so that f(t+-r) corresponds to u-T ~- Further, as we might expect, 

2 2 2 2 
llf(t+T)II = IIU-T ~II = 11~11 = llf(t)II ( ) 

H(Rx) H(X) H(X) H Rx 

(4) 

so that the length of f(s) in H(Rx) is translation invariant. In fact, u-T induces an operator VT: 

H(Rx) - H(Rx) by V-rf( •) = f( ·+T) and (4) shows that VT is unitary and it may be seen that {VT, 

t T t+T (VT)-1 u-T d VO - I F th' TER} is a one parameter group; V oV = V , = v an - . rom is we may 

conclude that 

The same arguments may also be used to show that a one parameter group {Vr, TER} of 
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unitary operators on H(Rx) induces a stationary process on H(X). 

Periodic P rocesses 

If there exists a T for which X(t) = X(t+T) (equality in H(X)) for every t E IR, we say that X 

is periodic with period T; we assume that T is the least positive value for which periodicity holds. It is 

not difficult to characterize the functions in H(Rx)· 

Proposition 

The following three statements are equivalent: 

(a) X is periodic with period T 

(b) If f E H(Rx), then f(t) = f(t+T) V tER where equality is pointwise. 

(c) Rx(u,v) = Rx(u+mT, v+nT) 'v u,v E R, m,n E Z (Rx(u,v) is doubly periodic 

with period T). 

Proof. We show (a) => (b) => (c) => (a) . 

To show (a) => (b), let f E H(Rx) and e be the corresponding element in H(X); then 

1r(t+T) - r(t)I = l<e, x(t+T) - x(t)>L) 11e11L
2

11x(t+T) - x(t)IIL
2

. 

To show (b) => (c) we note that Rx( •,t) = Rx( •+T,t) for every t means that Rx(s,t) = 
R(s+T,t) for every s,t; from this we conclude that Rx(s,t) and hence Rx(s,t) is periodic (with period 

T) in s (the first variable) for each fixed t. But since also Rx(s,t) = Rx(t,s) we conclude that Rx is 

doubly periodic with period T. 

To show (c) => (a), write 

2 
IIX(t+T) - X(t)II = Rx(t+T, t+T) - Rx(t+T,t) - Rx(t,t+T) + Rx(t,t) 

12 

and the result immediately follows. D 

So periodic processe~ correspond to H(Rx) consisting only of pointwise periodic functions. 
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Thus the function f E H(Rx) may be completely determined by 

f(t) = <{, X(t)>L , t E [O,T) 
2 

and extending f periodically. It is also obviously true (since f(t) = f(t+T)) that f(t+kT) is in H(Rx) 

for any f E H(Rx) and \lf(t)\IH(Rx) = \\f(t+kT)\IH(Rx); that is H(Rx) is closed under integral T 

translates. But more important, the integral T translates do not add anything to H(Rx) because of the 

periodicity. 

If X is periodic and stationary then the elements of H(Rx) are periodic and in addition, for all 

r, f(t+r) E H(Rx) and l\f(t)lln(Rx) = l\f(t+r)IIH(Rx)° In this case Rx(r) is periodic in r with 

period T and so <f(•+r), f(•)>H(Rx) will be also. 

PC Processes 

In general, from property (ii) 

H(Rx) 
N 

cl {f(t) = .I: a-Rx(t,t.), arbitrary N, t 1 ... tN, a1, ... , aN} 
J=l J J 

where the closure is in H(Rx)· If X is PC, the defining property (1) leads to Rx( •,t) = R( •+T, t+T); 
L 

that is if t is translated by T, the same function of the first variable is obtained, but also transfated by 
n .., (, >t , ) - Rx- 1• -T) i.:i --r') <2x (" -\<'i 7 , -4:" w 

T. This produces \.C ,. l 
( 

• N • 
H(Rx) = cl {f(t) = 'l: a-Rx(t-k.T, t. mod T), k. = [t./T], arbitrary N, t 1 ... tN} 

j=l J J J J J 

where [t] denotes the largest integer not exceeding t. If we denote R1 = {f(t) = R(t,s), s E [O,T)} then 

H(Rx) consists of limits of arbitrary integral T translates g(t) = a-Rx(t-k-T, s-) of elements of . J=l J J J 

R'. Said another way, H(Rx) is the smallest subspace containing integral T translates of the family of 

functions R1• We note the contrast to the stationary case where H(Rx) is the smallest subspace 

containing arbitrary translates of one function, and the periodic case where all the T translates of R
1 

coincide with R1 (no additional functions are obtained by adding the T translates). 
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The following shows how translations by T are characteristic to PC processes. We begin by 

examining time translates of length T in H(X). If X(t) is PC with period T, we define a linear 

operator J: sp(X) -+ sp(X) by 

N N J(E a,X(s.)) = E aJ.X(s.+T) 
:i=l J J j=l J 

for arbitrary N, s1 ... sN, al' ... , aN. It is clear from the PC property that if Yi,Y2 E sp(X) then 

so J is a congruence and can be extended to H(X). 

Let t 0 E R be arbitrary and set 

Ho(X) = sp{X(t), t E [t0, t 0+T)}, 

and generally 

HlX) = sp{X(t), t E [to+jT, to+O+l)T)}. 

It is clear that the congruence J: H/X) -+ Hj+ 1 (X), so Hj+ 1 (X) = JH/X) and 

Although we cannot claim the reverse inclusion, it is clear that 

H(X) = cl L;J Jjsp{X(t), t E [t0+jT, to+(j+l)T)} 
J 

_ sp { y J\p{X(t), t E [t0+jT, t0+(j+l)T)} 
J 

sp {X(t): t E R}. 

. H-(X) J_ H (X) for j =I= k, even when X is stationary. This just shows 
It is not true, m general, that J k 

. d fi d by a collection or family of random variables {X(s), s E [to, to+T)} and 
that a PC process 1s e me 

the orbit of this collection under iterates of a unitary operator J. 

H(R ) If { and f(.) are corresponding ele-
We now examine the corresponding action of J in x . 



ments in H(X) and H(Rx), then 

f(t) <{, X(t)>H(X) and define 

g(t) = <e, X(t-T)>H(X) = <e, J-1x(t)>H(X) = <Je, X(t)>H(X)' 

Thus g(t) = f(t-T) E H(Rx) and so we conclude that H(Rx) is closed under integral T translates; but 

the elements of H(Rx) need not be periodic. Further we note that there is an operator K: H(Rx) -

H(Rx) formed by identifying Kf (with f corresponding to {) as the element of H(Rx) corresponding to 

Je; so evidently Kf{•) = f{•-T). 

For any pair { +--+ f we thus have 

( ) · · It 1·s ev1'dent that K 1·s unitary and its action on f(·) E H(Rx) is to shift f(•) and Re p IS a covariance. 

to f( •-T). 

Now if we denote 

Hp = sp {Rx( •,s), s E (pT, (p+l)T)}, 

. t (1) · 1· th t ii consists precisely of the -pT translates of 110, that is the definmg proper y imp 1es a p 

- p-
Hp = {g(t) = f(t-pT), f E Ho} = K Ho. 

Ii d H obtained from the congruence 
It is also clear that there is a congruence between p an p 

between H(Rx) and H(X). 

. the examination of the Karhunen-Loeve 
We shall subsequently return to these spaces m 

. th RKHS for some particular subclasses of PC processes. 
representation, but we first examme e 
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Examples Q1 the RKHS fur_ Some Specific .fQ Processes 

1.:. Amplitude Scale Transformation QI Modulation I 
1 

7 

\ tt ( 
V 

Let X(t), t E R be wide sense stationary, with H(X) and H(Rx) defined previously. If P(t) is 

periodic with period T, then Y(t) = P(t)X(t) may be seen to be PC with period T. Clearly H(Y) C 

H(X) where the inclusion may be proper if P(t) has zeros, and so H(Ry) C H(Rx)· So if e E H(Y) C 

H(X), then 

fy(t) = <e, P(t)X(t)> = P(t)<e, X(t)> = P(t)fx(t). 

So the elements of H(Ry) are products of P(t) with fx(t) E H(Rx) (recall the nature of fx(t) for X 

stationary). We can easily check that H(Ry) is closed under integral T translates as if fy(t) E H(Ry ), 

then 

fy(t-T) = P(t-T)fx(t-T) = P(t)fx(t-T) E H(Ry) 

because fx(•-T) E H(Rx)· Recall fx(•+r) E H(Rx) for every r; this, however, does not say that 

arbitrary translates fy(•+r) are in H(Ry) for every T. 

2. Time Scale Transformation 

The next example is given by the time-scale transformation(modulation) Y(t) = X(t+P(t)) 

where X and P(t) are as above. If P(t) is continuous (and thus bounded), then H(Y) = H(X) and so if 

{ E H(Y) 

fy(t) = <{, X(t+P(t))> = fx(t+P(t)). 

So whenever fx(·) E H(Rx), fx(t+P(t) E H(Ry)- Specifically, since Xis stationary, fx(•-T) E H(Rx) 

and we may again verify that H(Ry) is closed under T translates as it must be. Write 

fx(t-T+P(t)) = fx(t-T+P(t-T)) = fy(t - T+P(t)) E H(Ry ). 

It may be of interest (later) to examine the spaces Hj and I\ for these examples. 
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a:_ Harmonizable £Q Processes 

I ) and we may write . . h X is harmonizable ( strong y 
The final example we consider is w en 

00 

X(t) = J exp(i.At) Z(d.A). 
-00 

In this event, every E H(X) may be written as 

00 

= f g(.A) Z(d.A) 
-00 

00 00 

f(t) = <~, X(t)> = f f g(.A 1) exp(-it.A2) rz(d.A1, dA2)· 
-00 -00 

· fi d t r .A - A - 21rk/T and so we For harmonizable PC processes, the support of rz 1s con me O mes 2 - 1 ' 

may write 

00 
f(t) = E 

k=-oo 

where 

00 00 

f g(.A) exp[-i(.A-21rk/T)t) rk(dA) = E exp(i21rkt/T) gk(t) \..( 
k=-oo -- .,,1 

-oo I -- l)•"\ I 
\ o \ "-/ 7 

df~ q.;.,- ,l# 
00 

gk(t) = f exp(-i.At) g(.A) rk(dA). 
-oo 

For now we ignore the issue of existence of these integrals. The primary point is the form of f(t), 

namely a sum of products of the form exp(i21rkt/T) gk(t), where the gk(t) are weighted Fourier 

transforms of rk. It is clear that f(t) for the amplitude modulation example can be put into this form 

if P(t) has a finite Fourier series by writing 

- N 
fy(t) = P(t) fx(t) = E I\ exp(-i21rkt/T) fx(t) 

k=- N 

so we identify gk(t) with i\fx(t). The general form for f(t) is interesting as it appears as a Fourier 

series with variable coefficients. Recall when X is a periodic process, f(t) = Ekfk exp(i21rkt/T), the 
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coefficients are constant. Further, when X is stationary, f(t) is represented by only the central term 

00 

f(t) = <e, X(t)> = J g(A) exp(-iAt) r0(dA) 
-oo 

where r0 is the spectral measure of X. We also note that the harmonizability of X implies f(t) is 

bounded and continuous. 

Interpretation 

00 
Since e = J g( .X) Z( d.X), the function g( A) describes the contribution to of Z in the 

-oo 

neighborhood of .X. The measure rk describes the correlation of increment Z(dA) with increment 

Z(d.\+27rk/T), indexed as a function of .\; rk may be considered a correlation measure for the 
00 

difference frequency -X1--X2 = 27rk/T. Thus gk(t) = J _
00 

exp(-Ut) g(.\) rk(d.\) is the g-weighted 

Fourier transform with respect to the correlation measure rk. At this time we are unable to give any 

further intrepretation of the form for f(t). 

Implications of the Karhunen-Loeve Representation 

Let us now restrict our attention to X(t) for tE[t0, t0+T); for convenience we take t
0 

= 0 but 

we should keep in mind that t0 is an implicit parameter in the following development. We also 

assume that Rx(s,t) is real valued and continuous on [O,T) x [O,T) and so there exists (Mercer's 

theorem) a sequence of eigenfunctions {¢p(t), p=l,2, ... } and non negative eigenvalues Ap for which I: Rx(s,t) ¢p(s)ds = Ap¢p(t) 

I: 'Pp(t) ¢q(t)dt = c5p,q 

00 
Rx(s,t) = E Ap 4>p(s) 4>q(t) 

1 

(5a) 

(5b) 

(5c) 

where the convergence is absolute and uniform on (0 T) (0 T) I h 
, X , • t t en follows that there exists a 

sequence {Xop• P = 1, 2, ... } of orthogonal random variables in Ho for which 



and for every t E (O,T), 

00 
X(t) = I: ¢p(t) Xop· 

p=l 

10 

(6) 

The first subscript of Xop refers to the "0th" interval (O,T); next we see what happens in the jth 

interval LlT, (j+l)T). 

For t E LlT, (j+l)T), the defining property (1) implies that the sequence {<Pp(t), p=l,2, ... } 

also solves 

(j+l)T 

J Rx(s,t) <Pp(s-jT)ds 
jT 

Ap ¢p(t-jT), jT $ t < (j+l)T 

or in other words, if we take </>p(t) to be extended periodically, then we can write 

(j+l)T 

I Rx(s,t) </>p(s)ds Ap </>p(t), jT $ t < (j+l)T, 
jT 

(j+l)T 

I <Pp( t) <Pq ( t )dt 8p,q 
jT 

and 

Rx(s,t) 
00 
L Ap <Pp(s) <Pq(t) . 
1 

(7a) 

(7b) 

(7c) 

From this it is clear that for any j there is a se uence {X q jp' p=l,2, ... } of orthogonal random variables 
in Hk for which 

<X. , X. > - , • JP Jq H(X) - -"p 0 p,q 

and for every t E uT, (j+l)T) 

00 
X(t) = I: ¢ (t) X. 

p=l p JP ' (8) 



} are taken in the extended sense. 
where the functions { 4>p(t), p=l,2,··· 

11 

· d X = JX. · 
H 

- {X p-1 2 } and that for any J an P, j+l,p J,P 
We shall now show that j = sp jp' - ' , ... 

h X ma be obtained from X( t) by 
To see these results we need to use the fact t at jp y 

(j+l)T 

x. = J X(t) 4>p(t)dt 
JP 

(9) 

jT 

. . 1 bee <P (t) is continuous and X(t) is 
where the integral will exist as a Riemann stochastic mtegra ause P 

h X E H and so using (8) we conclude continuous in quadratic mean. Hence eac jp j 

{X(t), t E UT, (j+l)T)} c sp{Xjp' p=l,2, ... } C Hj ; 

H -{x 1 2 } Since we have taking the span closure of the leftmost set gives the result that j = sp jp' p= 1 
, ••• • 

already established that JX(t) = X(t+T), then from (9) 

JXjp = r~r X(t) ¢p(t)dt] 

(j+l)T 

J X(t+T) ¢p(t)dt 
jT 

(j+l)T 

J JX(t) ¢p(t)dt 
jT 

X-+1 . J ,P 
(10) 

The opera.tor J may be brought inside the integral because it is linear a.nd unitary; consider J acting on 

finite approximations to the integral. A different sequence {Xjp' p=l,2, ... } of orthogonal random 

variables is required to represent X(t) on each interval UT, (j+l)T). Since J is unitary, the action of J 

is to rotate the elements of {Xjp' p=l,2, ... } while preserving their length a.nd mutual orthogonality. 

The relationship (10) expresses the fact that the collection {X. , p=l,2, ... } may be considered 
JP 

on infinite dimensional stationary vector sequence (with time parameter j). We denote rpq(j-k) = 

E{Xjp:Xkq} as the infinite dimensional covariance matrix of the sequence {Xj}. Using (9), we may 

compute rpq(j-k) by 

(j+l)T (k+l)T 
rpq(j-k) J J Rx(s,t) ¢p(s) ¢q(t) dsdt (11) 

jT kT 
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where <Pp(·) is taken to be periodically extended; note rpq (0) = Ap6p,q · 

. d lso be confirmed directly in (11) The fact that (11) is a function of (J-k) for fixe p,q may a 

. R ( t) may be expressed for all s,t, where for from the defining property ( 1). Also, the covariance x s, 

specificity s E LJT, (j+l)T) and t E [kT, (k+l)T), by 

Rx(s,t) 
00 00 E E rpq(j-k) <Pp(s) 1/>q(t). 

p=l q=l 
(12) 

We shall now examine the form rpq(n) for some specific examples. First, if Xis stationary then 

(11) produces 

(j+l)T 

rpq(j-k) = J 
jT 

(k+l)T 

f Rx(s-t) 1/>p(s) 1/>q(t) dsdt 
kT 

(13) 

which shows that rpq(j-k) still depends on j-k but does not depend on the time origin of the process 

(recall the parameter t0). Next, we permit X to be PC but Hk .l Hj' or equivalently, 

in this case every new interval of length T adds a countable subspace to the history of the process ( each 

Xjp for fixed p is a white noise process). Finally, in the other extreme, suppose every new interval of 

length T adds nothing, so Hk = Hj" An example is when X is periodic because then, from (11), 

rpq(j-k) = Ap c5p- qi that is, rpq(j - k) does not depend on j or k. Note X periodic is equivalent to J = 

I but it is possible to have Hk = Hk+ 1 without J = I; for example, J only needs to rotate all the Xkp 

to preserve their lengths and relative angles (i.e., inner products). 

Another Associated Hilbert Space 

We next introduce another auxiliary Hilbert space that is used in the RKHS theory for pro-

cesses defined on [O,T], and should therefore be helpful here. Given a sequence of weights 

>. = P.1,,\2,··•l, denote H(,\) as the set of real sequences square summable with weights,\; that is 
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H(X) 

If for sequences a,b E H(..\) we define the inner product <a,b>H(..\) = E: 1 aphp..\p, 
th

en 

H(.X) may be seen to be a Hilbert space. There is a congruence between H(..\) and Hj; if a,b E H(..\), 

then define z.(a) z.(b) E H. by z.(a) = :E00 apX· and similarly for ZJ.(b). Then, since 
J ' J J J p=l JP 

and 

<X· , x. > = .Xphp-q, we have 
JP Jq 

2 
IIZ.(a)II 

J H, 
J 

00 2 E ap .Xp, 
p=l 

2 00 2 
IIZ/b)II = E hp Ap, 

H. p=l 
J 

This shows that Zj maps H(.X) into Hj and preserves inner products. The mapping is also 

onto H. because if E H., = :E00 apX· (the x. , p = 1, ... form an orthogonal basis for H.) so 
J J p=l JP JP J 

00 2 Ep=l opAp < oo. Hence Zj is a congruence map (or there is a congruence between Hj and I-1(..\)). 

We now observe some additional facts about rpq(j - k). If x E H. so x = :E00 
apX· and y E J p=l JP 

00 
Hk, y = E l bqX· , then q= Jq 

<x,y>H(X) 
00 00 E E aphprpq(j-k) 

p=l q=l 

Thus for any j and k, and any a,b E H(.X), the correlation rpq(j-k) must satisfy 

In addition, rpq(j-k) is non-negative definite in the sense implied by IIE;=laµXµll2 o for 

Xµ E sp{Xjp' j E 7L, P E N}. Or equivalently, for arbitrary m constants "' "' , ._.1,···, .... m, sequences a 1, 

···,am ( E H(.X)) and integers n1 , ... ,nm 
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m m oo oo E E au av E E aµp avq rpq(nµ-nv) > 0. 
µ=1 v=l p=l q=l 

The RKHS Again 

We are now in a position to compute f(t) = <e, X(t)>H(X) under some restrictions on ! and 

the nature of X. First we can compute f(t) if e E Hj and t E [kT, (k+l)T); for then 

f(t) 
00 00 E E ap </>q(t) rpq(j - k) 

p=l q=l 
(14) 

where we now observe that for any t the sequence {</>q(t)} EH(>.). Suppose now that Hk = Hk+l for 

all k, then Hj = H(X) and so all f(t) E H(Rx) are of the form (14). If, in addition, X is periodic, then 

rpq(j-k) = Ap 6p-q, so (14) becomes f(t) = E:
1
ap¢p(t)>.p where ¢p(t) is interpreted as the periodic 

extension, which makes f(t) periodic as required. 

If HJ . ..l Hk for j # k, then rpq(j - k) = Ap6p- q6· k so f.(t) = E
00 

a. ¢p(t)>.p but we must J- J p=l JP 

be careful to say for e. E H. and t E LlT, (j+l)T). In this case, set e = E· E..,, e. with e- E H-; then J J J IL J J J 

ej ..l ek implies llell 2 = Ej Elllej11 2, f/t) ..l fk(t), and 

and 

f(t) = E f.(t) 
jEZJ 

llfll
2 

( = E llf/t)11
2 

. 
H Rx) H(Rx) 

Note that f/t) = 0 fort LlT, (j+l)T) so we can also write f(t) = f/t), t E LlT, (j+l)T). 

The general PC case is more difficult because e is a limit of linear combinations of e. E H.. If 
J J 

e = :EjEFej, where the ej no longer need to be mutually orthogonal, then fort E [kT, (k+l)T) 

00 00 
f(t) = < E E a. X. , E </>q(t)Xk > 

jEF p=l JP JP q=l P 
00 00 

= .EF E E aJ·p<Pq(t)rpq(j - k). 
JE p=l q=l 

General elements of H(Rx) are limits of linear combinations of this form. 
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