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Introduction

Suppose X(t), t € Ris a second order continuous ti

T and mean E{X(t)} = 0. We may then write

Ry (u,v) = Rx(u+T, v+T)

for every u, V.

The purpose of these notes is to sketch some fac

(RKHS) associated with X. We denote H(X) = sp

and H(Rx) = {f: R—C, i(t) =

on H(Ry) is defined by

E{¢X(t)} for & € H(X)} is the associat

me complex-valued PC process with period

(1)

ts about the reproducing kernel Hilbert space

{X(t), teR} as the Hilbert space of the process X

ed RKHS. The inner product

(2)

<te>g(Ry) = E{£7} = <&6n>1,(Q,9,P)

where € and 7 co
(i) Rx(-t) € HRx) VtER

(i1) span{Rx(",t) teR} is dense in H(Rx)

(i)  <f(-), R}(-,t)>H(Rx) =f(t) Vf€

This is the reproducing property.

(iv) H(X) and H(Rx) are isomorphic with X(t,w)

These elementary properties are stated here fo

We are looking for properties of the eleme

rrespond to f and g through the definition of H(Rx

). It may be shown that

(T = X )

_\—;O(J. E_x(')‘(_;\ = k—‘( 27 J

L

H(Rx) and V t € R

- R(-,t) = R(t,)) VtE R.
\ \

X

r convenience.

nts of H(Ryx) that arise from the defining property



(Dof P .
) C processes. We find it helpful to begin with two important sub classes of the PC processes.

Stationary Processes

Since stationary processes are PC with every period, we first look at the form of H(Ryx) for

stationary processes indexed on the entire real line R. The only feature we currently call attention to

arises from property (ii); that is

_ N
H(Ryx) = sp{Rx(-,t), teR} = cl {f(t) = 3° aij(t—tj), arbitrary N, t1...bN) 875 o ay}
i=1

where ¢l means closure, in this case with respect to the norm ”“H(Rx) induced by <" >H(Ry)' In

words, the elements of H(Ryx) are limits of linear combinations of arbitrary translates of Rx(u).

So f(t) € H(Rx) implies f(t+7) € H(Ry) for every 7; that is, H(Ry) is closed under arbitrary

translations. This can be seen in another wa

y. Since X is stationary there exists a one parameter

group of unitary operators on H(X) defined by UTX(t) = X(t+7). If € corresponds (1-1) to f(+), then

we write

f(t+7) = E{¢ X(t+7)} = <€EUTX(M)>gx) = <UTTE X(0)>g(x) ®

so that f(t+7) corresponds to U~ T¢. Further, as we might expect,

2
IIf(t+T)I|H ®

_ 2
= lu¢ll
x) H(X

2 2
= el =l Q
0= "

H(Rx)
so that the length of f(s) in H(Ry) is translation invariant. In fact, U7 induces an operator v™:
H(Rx) — H(Rx) by VTi(-) = f(-+7) and (4) shows that VT is unitary and it may be seen that {V7,
r€R} is a one parameter group; vtovT = vt (VT)'1=V-T and v0 = I. From this we may

conclude that

<f(-+7), f() > g(ry) = <UTTE E>gx) = Re(™-

The same arguments may also be used to show that a one parameter group {VT, T€R} of



unitary operators on H(Ry) induces a stationary process on H(X).

Periodic Processes

If there exists a T for which X(t) = X(t+T) (equality in H(X)) for every t € R, we say that X
is periodic with period T; we assume that T is the least positive value for which periodicity holds. It is

not difficult to characterize the functions in H(Ry).

Proposition
The following three statements are equivalent:
(a) X is periodic with period T
(b) If f € H(Ry), then f(t) = f(t+T) V tER where equality is pointwise.
(¢) Rx(u,v) = Rx(u+mT, v4+nT) V u,v € R, myn € Z (Rx(u,v) is doubly periodic

with period T).

Proof. We show (a) = (b) = (c) = (a).

To show (a) = (b), let f € H(Rx) and ¢ be the corresponding element in H(X); then

(E+T) -~ )] = | <& X(+T) - X(©)> | < i€l [IX(E+T) - X(®)lly,, -

To show (b) = (c) we note that Rx(:,t) = Rx(-+T,t) for every t means that Ry(s,t) =
R(s+T,t) for every s,t; from this we conclude that Ry(s,t) and hence Ry(s,t) is periodic (with period
T) in s (the first variable) for each fixed t. But since also Ryx(s,t) = Rx(t,s) we conclude that Ry is

doubly periodic with period T.
To show (¢) = (a), write

2
[|X(t+T) - X(t)nL = Rx(t+T, t+T) — Rx(t+T,t) — Ry(t,t+T) + Rx(t,t)
2

and the result immediately follows. O

So periodic processes correspond to H(Rx) consisting only of pointwise periodic functions.



Thus the function f € H(Rx) may be completely determined by

f(t) = <&, X(t)>L2, t € [0,T)

and extending f periodically. It is also obviously true (since f(t) = f(t+7T)) that f(t+kT) is in H(Rx)

for any f € H(Rx) and Hf(t)HH(Rx) = ||f(t+kT)||H(Rx); that is H(Ry) is closed under integral T

translates. But more important, the integral T translates do not add anything to H(Rx

) because of the
periodicity.

If X is periodic and stationary then the elements of H(Rx) are periodic and in addition, for all

r, f(t+7) € H(Rx) and Hf(t)“H(Rx) = ||f(t+r)||H(Rx). In this case Ry(7) is periodic in 7 with
period T and so <f(-+7), f(-)>H(RX) will be also.

PC Processes

In general, from property (ii)

N
H(Ry) = cl {f(t) = X2 aij(t,tj), arbitrary N, tq...tn 8y -0 ay}
=1

where the closure is in H(Rx). If X is PC, the defining property (1) leads to Rx(-,t) = R(-+T, t+T);

that is if t is translated by T, the same function of the first variable is obtained, but also transﬁxted by

p . -— - o — \c, T { {
T. This produces \?Y(‘){'3> = Qx(' T4 RIS CY S

(

N .
H(Ryx) = cl {f(t) = > aij(t—ij, t’j mod T), kj = [t,j/T], arbitrary N, t;...tx5}
j=1

J:

where [t] denotes the largest integer not exceeding t. If we denote R' = {f(t) = R(t,s), s € [0,T)} then

y . N
H(Ryx) consists of limits of arbitrary integral T translates g(t) = Ej_ 1a,ij(t;—ij, sj) of elements of
R’. Said another way, H(Rx) is the smallest subspace containing integral T translates of the family of

functions R'.

We note the contrast to the stationary case where H(Ry) is the smallest subspace

containing arbitrary translates of one function, and the periodic case where all the T translates of R/

coincide with R (no additional functions are obtained by adding the T translates).



The followi .
owing shows how translations by T are characteristic to PC processes. We begin by

examini i .
ning time translates of length T in H(X). If X(t) is PC with period T, we define a linear
operator J: sp(X) — sp(X) by

J 3 X 3
gz=: aX(s) = j§1ajx(sj+T)
for arbitrary N, s,...sy, aq, ..., ay. It is clear from the PC property that if y1,¥9 € sp(X) then

so J is a congruence and can be extended to H(X).

Let t) € R be arbitrary and set

Hy(X) = sp{X(t), t € [tg, tg+T)}

and generally
Hj(X) = sp{X(t), t € [txHT, tg+G+1)T)}
It is clear that the congruence J: Hj(X) — Hj +1(X), S0 Hj +1(X) =1J Hj(X) and

BX) > Y H(X) = Y PHy(X).
J J

Although we cannot claim the reverse inclusion, it is clear that

HX) =y Pep{X(t), t € [tgHT, tg+(+DT)}

sp {U Psp{X(t), t € [tgH T tp+(+1)T)}
J
= 5p {X(t): t € R}.
o not. true, in general, that H(X) L Hy (X) for j # ks even when X s stationary. ‘This just shows

that a PC process is defined by a collection or family of random variables {X(s), s € [tO, t0+T)} and

the orbit of this collection under iterates of a unitary operator J.

We now examine the corresponding action of J in H(Ry). If £ and f(-) are corresponding ele-



ments in H(X) and H(Ry), then
f(t) =
(t) <&, x(t)>H(X) and define

8t) = <& X(E-T)>pxy = < J“IX(t)>H(X) = <J& XO>p )

Thus g(t) = f(t-
g(t) = f(t-T) € H(Rx) and so we conclude that H(Ry) is closed under integral T translates; but
the el _
elements of H(Ry) need not be periodic. Further we note that there is an operator K: H(Rx) —
(Ry) formed by identifying Kf (with f corresponding to £) as the element of H(Ry) corresponding to

J§; so evidently Kf(:) = f(--T).
For any pair £ — f we thus have

b -
<K f’f>H(Rx) = <f(--pT), f(-)>H(Rx) = <J pg’E>H(x) = Rg(P)

and R E(p) is a covariance. It is evident that K is unitary and its action on f(-) € H(Rx) is to shift f(-)

to f(--T).
Now if we denote

fi, = 5 {Rx(-), s € T, (P+1)D};

the defining property (1) implies that flp consists precisely of the —pT translates of ﬁO’ that is

fi, = {0 = f-pD), £ € Ho} = KAy

d Hp obtained from the congruence

It is also clear that there is a congruence between ﬁp an

between H(Rx) and H(X).

We shall subsequently return to these spaces in the examination of the Karhunen-Loéve
the RKHS for some particular subclasses of PC processes.

representation, but we first examine



Examples of the RKHS for Some Specific PC Processes

1. Amplitude Scale Transformation or Modulation

Let X(t), t € R be wide sense stationary, with H(X) and H(Rx) defined previously. If P(t) is
periodic with period T, then Y(t) = P(t)X(t) may be seen to be PC with period T. Clearly H(Y) C

H(X) where the inclusion may be proper if P(t) has zeros, and so H(Ry) C H(Ry). Soif £ € H(Y) C
H(X), then

fy(t) = <& P(t)X(t)> = P(t)<¢, X(t)> = P(t)fx(t).

So the elements of H(Ry) are products of P(t) with fx(t) € H(Rx) (recall the nature of fy(t) for X

stationary). We can easily check that H(Ry) is closed under integral T translates as if fy(t) € H(Ry),
then

fy(t-T) = P(t-T)fx(t-T) = P(t)fx(t-T) € H(Ry)

because fy(-—T) € H(Rx). Recall fx(-+7) € H(Rx) for every 7; this, however, does not say that

arbitrary translates fy(-+7) are in H(Ry) for every 7.

2. Time Scale Transformation

The next example is given by the time-scale transformation(modulation) Y(t) = X(t+P(t))
where X and P(t) are as above. If P(t) is continuous (and thus bounded), then H(Y) = H(X) and so if
¢ € H(Y)

fy(t) = <& X(t+P(t)> = fx(t+P(t)).

So whenever fx(-) € H(Ry), fx(t+P(t) € H(Ry). Specifically, since X is stationary, fx(--T) € H(Rx)
and we may again verify that H(Ry) is closed under T translates as it must be. Write
£ (t-T+P(t)) = fx (t-T+P(t-T)) = fy (t-T+P(t)) € H(Ry).

It may be of interest (later) to examine the spaces Hj and ﬁj for these examples.



3. Harmonizable PC Processes

. ite
The final example we consider is when X is harmonizable (strongly) and we may Wrl

(o, ¢}
X(t) = I exp(idt) Z(dA)-

-0

In this event, every & € H(X) may be written as

o0

e= | s 2y

-0

where _[c_’ooo j'fooog(/\l)m rz(dAy, d)g) < oo; then
00 00
f(t) = <& X(t)> = J J g(};) exp(-itAg) rz(dAg, dXg).
—00 —00

For harmonizable PC processes, the support of r; is confined to lines Ay = AL - 27k/T, and so we

may write
o ¥ o
= S J g(%) exp[-i(A-27k/T)] 1 (dX) = 5 exp(i2mkt/T) gy (t)
k=-0c0 _%o k=-c0o —™ "
where X L\" N \)‘“{R .
o e

g () = J exp(-it) g() 1 (dN).

For now we ignore the issue of existence of these integrals. The primary point is the form of f(t)
namely a sum of products of the form exp(i2wkt/T) gk(t), where the gk(t) are weighted Fourier
transforms of r,. It is cl i i

K is clear that f(t) for the amplitude modulation example can be put into this form

if P(t) has a finite Fourier series by writing
fy(t) = P 3

so we identify g, (t) with P fy(t
k() kfx(t). The general form for f(t) is interesting as it appears as a Fourier

series with variable coefficients Rec
. all when X i iodi
8 a periodic process, f(t) = Ly 0y exp(i27kt/T), the



coefficients are constant. Further, when X is stationary, f(t) is represented by only the central term

f(t) = <& X{t)> = J g(A) exp(-iAt) ry(dA)

where r( is the spectral measure of X. We also note that the harmonizability of X implies f(t) is

bounded and continuous.

Interpretation

Since ¢ = _fiooog()\) Z(dX), the function g(A) describes the contribution to £ of Z in the
neighborhood of A\. The measure r, describes the correlation of increment Z(dA) with increment
Z(dA+27k/T), indexed as a function of ); r, may be considered a correlation measure for the
difference frequency A;-Ay = 27k/T. Thus g (t) = j'ioooexp(—i/\t) g(A) 1 (dA) is the g-weighted
Fourier transform with respect to the correlation measure r.- At this time we are unable to give any

further intrepretation of the form for f(t).

Implications of the Karhunen-Loéve Representation

Let us now restrict our attention to X(t) for t€[tg, tg+T); for convenience we take ty = 0 but
we should keep in mind that tg is an implicit parameter in the following development. We also

assume that Ry(s,t) is real valued and continuous on [0,T) x [0,T) and so there exists (Mercer’s

theorem) a sequence of eigenfunctions {¢p(t), p=1,2,...} and non negative eigenvalues Ap for which

T
Jo Rx(s.t) p(s)ds = Apdp(t)

(5a)
T

jo bp(t) dq()dt = 8pq (5b)
Ry(st) = ?Ap $p(s) éq(t) (5¢)

where the convergence is absolute and uniform on [0,T) x [0,T). It then follows that there exists a

sequence {XOp’ P =1,2, ..} of orthogonal random variables in H( for which



10

<Xgp Xpg>H(x) = PP

and for every t € [0,T),

o (6)
X(t) = X ¢p(t) Xgp-
p=1

The first subscript of XOp refers to the “Oth” interval [0,T); next we see what happens in the jth
interval [jT, (j+1)T).
For t € [jT, (j+1)T), the defining property (1) implies that the sequence {#p(t), p=12,...}

also solves

(G+1)T
Rx(s,t) ¢p(s-iT)ds = Ap ¢p(t-iT), JT <t < (+1)T
ijT

or in other words, if we take ¢p(t) to be extended periodically, then we can write

G+1)T
Rx(s,t) ép(s)ds = Ap ép(t), JT <t < (+1)T, (7a)
jT
G+1)T
¢p(t) dq(t)dt = &pq (7b)
jT
and
Rx(sit) = ? Ap ¢p(s) dq(t) . (7c)

From this it is clear that f j 1
or any j there is a sequence {ij, p=1,2,...} of orthogonal random variables

in Hk for which

“Xip Xjq>n(x) = *plpa

and for every t € [jT, (G+1)T)

o0
X(t) = p§::1 ép(t) Xio ®)
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i e.
where the functions {¢p(t), p=1,2,...} are taken in the extended sens

: and p, X; =JX. .
We shall now show that Hj =5p {ij, p=1,2,...} and that for any j and P» 2541 p 5P

btained from X(t) by
To see these results we need to use the fact that ij may be obta

G+1)T o)
X, = J:mq¢ﬂo&
iT

ic i i i d X(t) is
where the integral will exist as a Riemann stochastic integral because ¢p(t) is continuous and X( )

i i lude
continuous in quadratic mean. Hence each ij € Hj and so using (8) we conclu
{X(t)’ t € bTa (J+1)T)} c -S—p{XJp’ p=1a2’} - Hj 3

i =5p = i we have
taking the span closure of the leftmost set gives the result that Hj = sp{ij, p=1,2,...}. Since we

already established that JX(t) = X(t+T), then from (9)

G+1)T G+1)T
X, = 3 j X(t) p()dt | = I IX(t) dp(t)dt
JP
T iT
G+1)T
= [ XD s = Xy, (10)
T

The operator J may be brought inside the integral because it is linear and unitary; consider J acting on
finite approximations to the integral. A different sequence {ij, p=1,2,...} of orthogonal random
variables is required to represent X(t) on each interval [jT, (j+1)T). Since J is unitary, the action of J

is to rotate the elements of {ij, p=1,2,...} while preserving their length and mutual orthogonality.

The relationship (10) expresses the fact that the collection {ij, p=1,2,...} may be considered
on infinite dimensional stationary vector sequence (with time parameter j). We denote rpqi-k) =

E{ijXk q} as the infinite dimensional covariance matrix of the sequence {Xj}. Using (9), we may

compute rpq (3-k) by

G+1)T (k+1)T

tpq(i-k) = j Ru(s.t) 6p(s) dq(t) dsdt

T KT (11)
i
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where ¢p(-) is taken to be periodically extended; note l'pq(O) = ’\Pép,Q'

i in (11

The fact that (11) is a function of (j—k) for fixed p,q may also be confirmed directly in (11)

here for

from the defining property (1). Also, the covariance Rx(s,t) may be expressed for Bll &8 Wiene

specificity s € [jT, (j+1)T) and t € [kT, (k+1)T), by

Ry(st) = 5 3 rpq(i-k) 4p(s) dq(0)- (12)
p=1 q=1

: i amwsd " then
We shall now examine the form rpq(n) for some specific examples. First, if X is stationary the

(11) produces

G+1)T (k+1)T

a0 = [ | Ra(e-) 6p(6) dq(t) dsdt (13)
jT kT

which shows that rpq(j—k) still depends on j—k but does not depend on the time origin of the process

(recall the parameter to). Next, we permit X to be PC but Hk " Hj’ or equivalently,

in this case every new interval of length T adds a countable subspace to the history of the process (each

ij for fixed p is a white noise process). Finally, in the other extreme, suppose every new interval of

length T adds nothing, so H, = Hj' An example is when X is periodic because then, from (11),

rpq(i-k) = Ap 6p—q; that is, rpq(i—k) does not depend on j or k. Note X periodic is equivalent to J =

I but it is possible to have Hk = Hk +1 without J = I for example, J only needs to rotate all the ka

to preserve their lengths and relative angles (i.e., inner products).

Another Associated Hilbert Space

We next introduce another auxiliary Hilbert space that is used in the RKHS theory for pro-

cesses defined on [0,T]), and should therefore be helpful here. Given a sequence of weights
A = {AI,I\Q,..-},

denote H()) as the set of real Sequences square summable with weights A; that is
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HX) = {a=(apag-) p§1 a2 Ap < 00}.

00
. = Ap, then
If for sequences a,b € H(X) we define the inner product <a,b>H( 2= Zp:l apbpAp
. ot i A [
H()\) may be seen to be a Hilbert space. There is a congruence between H()) and HJ’ if a,b € H(})

- 3% imi .(b). Then, since
then define Zj(a,), Zj(b) € Hj by Zj(a) = sz ] apij and similarly for ZJ( ) en

<ij, qu> = ApSp-q» We have

2 R 5 2 xXR 2
Z, = a5 Aps NZ.(b)lI. = X bp Aps
| J(a)”Hj pZ___:l P Ap j B p=l p Ap

and

o0

This shows that Zj maps H()) into Hj and preserves inner products. The mapping is also
onto Hj because if £ € Hj’ = Z;o___ ] apXj b (the ij, p = 1,... form an orthogonal basis for Hj) S0
00

0 1 a%)\p < oo. Hence Zj is a congruence map (or there is a congruence between Hj and H(})).

We now observe some additional facts about rpq(j-k). If x € Hj sox=3

p=1 apij and y €

0
Hy,y = E _ ) bgXjq, then
0 @ .
<x,y>H(X) = . 2 apbprpq(i-k)
p=1 q=1
2ol — (R .2 X
<sr>lgge < I P = (£ o) (£ b3Ap ).

Thus for any j and k, and any a,b € H(}), the correlation rpq(j—k) must satisfy

DI
NI

(©.9) 0 o0 00
|2 3 apbprpq(-k)| < ap b3
2 ZPoPra £ (pz=:1 53p) (pgl Bp )

In addition, rpq(j-k) is non-negative definite in the sense implied by ||EZI=101 pX ““2 > 0 for

X,esp{X. ,jez i i
m p{X. ,j€Z peN}. Or equivalently, for arbitrary m, constants 1y Om, Sequences a;,
.am (€ H(X)) and integers 5oyl
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m m X X < 0
Y Youdy X X aupavgrpq(npiy) 2 0
p=1 =1 p=1 q=1

We are now in a position to compute f(t) = <&, X(t)>H(X) under some restrictions on £ and

the nature of X. First we can compute f(t) if £ € Hj and t € [kT, (k+1)T); for then

f(t) = <pz=;1apxjp, q2=31¢q(t) Xeg>H(X) = pz_j q; ap éq(t) rpq(i-k) (14)

where we now observe that for any t the sequence {¢q(t)} € H(A). Suppose now that Hj = Hy ,, for

all k, then Hj = H(X) and so all f(t) € H(Rx) are of the form (14). If, in addition, X is periodic, then

1pq(i-k) = Ap 8p—q, so (14) becomes f(t) = E:ilapdsp(t),\p where @p(t) is interpreted as the periodic

extension, which makes f(t) periodic as required.
$®
If H L Hy for j # k, then rpq(j—k) = App- q6 _k SO fJ(t) =2 Jp¢p(t)’\p but we must

be careful to say for Ej € Hj and t € [jT, (j+1)T). In this case, set £ = G Z f with E € H then

. . 2
6‘] 1 fk 1mphes ”5” = J€Z||€JI|2’ f:](t) L fk(t)) and

fit) = X ()
JEZ
and

2 2
f = X :
I ”H(Rx) > “f-‘(t)“H(Rx)

Note that i:](t) =0fort & [iT, (j+1)T) so we can also write f(t) = fj(t), t € [T, G+1)7T).
The general PC case is more difficult because € is a limit of linear combinations of ¢, € H.. If
E=3

jEFej’ where the 'Sj no longer need to be mutually orthogonal, then for t ¢ [kT, (k+1)T)

i) = <y Sax 2¢q<t)xkp> =2 ¥

iR p=1 PTIP S =1 E 3 p®q(t)rpq(i-k).

General elements of H(Rx) are limits of linear combinations of this form
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