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Wave elevation model

Longuet-Higgins model: Along x-direction and time t,

((x,t) = Z:I:l ap cos(kn(cos pg)x — wyt + ¢p)

with frequencies w,,, amplitudes a, = \/25(w,)Aw for spectrum S(w),
heading o, random phases ¢,, and wave numbers

kn=w?/g. (Dispersion relation)

At x =0,

Co(t) = Z:I:l ap cos(—wut + ¢p)

ACVF:

N e
R(h) = Zcos(hw,,)S(W,,)AW o~ / cos(hw)S(w)dw.
n=1 0
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Wave elevation at non-zero speed

Non-zero forward speed: Setting x = Uyt for speed Up, the model
becomes

Ce(t) = ZHNZI an COS(_We,nt + ¢n)

for encounter frequencies

— Yo 2 _ 2
We,n = Wp — ;(cos,ug)wn = w, — qw;.

ACVF:

N oo
R(h) = " cos(hwe,n)S(wn)Aw ~ / cos(hwe)S(w)dw.
n=1 0
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Original and transformed spectra

Note: With we = w — gw? = w — %cosuow2 and for g >0
(1o € (=%, %)),

/0 h cos(hwe)S(w)dw = /O b cos(hv)S(v)dv,

where
S) = S(wi(v)) + S(wa(v)) S(ws(v))
(1—4qu)t/2 (1+ 4qu)i/2
for v € (0,1/4q), and
Sy = Sw)

(1 + 4qu)t/2
for v € (1/4q, ).

Power-law divergence of spectrum at non-zero frequency: As
v 1 1/4q above. (This is directly related to the dispersion relation.)
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Original and transformed spectra
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(b) FIRST TRANSFORMATION STEP

Fig. 68 Transformation of wave spectrum to encounter spectrum, following
or quartering waves (long-crested)
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Transformed spectrum and ACF
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The decay will always be slow but magnitude of ACF coefficients at lags
will depend on the underlying spectrum and speed.
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ACF

Ship motion: The plot presents one such ACF for the pitch motion from a
30-minute-long record. This is for the flared variant of the ONR Topsides
Geometry Series, in sea state 6, the heading of 45°, and traveling at 25 kts.
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Bits of data

For the same pitch motion process:
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How to put confidence intervals, e.g., on the variance?
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Cyclical long memory (LM)

Discrete time: Stationary process X = {X,}pcz. Assume EX, = 0.

Spectrum: For some frequency 19 > 0, d € (0,1/2) and c;r, ¢ >0,

Sx(v) ~ i (v—w)2,  asv -y,
c; (vo—v)™%, asv — .

ACVF: For Rx(h) = EXpypXn,

Rx(h) =~ Cgcos(voh + ¢g)h**7L, as h — oo.

Longuet-Higgins: d = 1/4, ¢/ =0, ¢g = —7/4 # 0.

Notes: [, |Rx(h)|dh = oo, ‘ I Rx(h)dh‘ < oo. Traditional LM: 15 = 0.
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Cyclical LM

Origins: Hosking (1981), “Fractional differencing,” Biometrika, last para:

Finally we mention two other processes involving fractional differencing which may
prove useful in applications. The fractional equal-root integrated moving-average process
is defined by Vy, = (1—0B8)%a,,[¢| < %, |8] < 1; as a forecasting model it corresponds to
‘fractional order multiple exponential smoothing’. The process (1 —26B+ By, = a,,
|d| <4, [¢| <1, exhibits both long-term persistence and quasiperiodic hehaviour; its
correlation function resembles a hyperbolically damped sine wave.

There were a number of follow-up papers looking at this phenomenon,
with some applications. But it has largely stayed at the margins of LM
research. E.g. pp. 185-191 in Giraitis et al. (2012; 500+ pages); pp.
496-499 in Beran et al. (2013; 800+ pages); no mention in Pipiras and
Taqqu (2017; 600+ pages); etc.

No other known physical model leading to this phenomenon?
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Random modulation viewpoint

Random modulation: Take two independent copies { Y1 n}nez, { Y2,n}tnez
of LM series Y satisfying Ry (h) ~ crh??~1, as h — oco. Set

Xn = cos(von) Y1,n +sin(von)Yan, n€Z.
By construction,
EXninXn = (cos(voh) cos(vo(n + h)) + sin(voh) sin(vo(n + h))) Ry (h)
= cos(voh)Ry (h) ~ crcos(rgh)h®?~1, as h — oo,

and hence {X,} has cyclical LM with ¢ = 0.

General ¢: Need to take LM series { Y1 n}nez and {Y2,n}nez dependent
in particular way, from both LM perspective and also for all lags.
Parametric families can also be constructed with explicit ACVFs.!

!S. Kechagias, V. Pipiras and P. Zoubouloglou (2024), “Cyclical long memory:
Decoupling, modulation and modeling,” SPA, 175, 104403.

Vladas Pipiras (UNC) Cyclical LM PC Processes, 2025 11/12



Conclusions

Key takeaway:

@ Model for wave elevation and ship motions at non-zero speed
characterized by (cyclical) LM.
@ Random modulation sheds light on the nature of cyclical LM.

Question: What is going on with another motion, so-called roll?
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