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Introduction

@ For infinite-variance processes, the classical definition of
periodically correlated (PC) time series cannot be used.

@ We consider a generalization of PC property, where covariance
is replaced by fractional lower-order covariance (FLOC).

@ This property can be useful for modeling phenomena that
exhibit both periodic and heavy-tailed behavior.

@ For the analysis of such time series, we propose two new
autodependence measures — peFLOACF and peFLOPACF.

@ We also present two applications of these measures: for
dependence testing and model order identification.

@ To further illustrate the practical usefulness of this
methodology, real data analysis example is included.



Fractional lower-order covariance (FLOC)

Fractional lower-order covariance (FLOC): alternative to covariance

Definition (Fractional lower-order covariance, FLOC)

For random variables Y7, Y, with finite moments up to some order
1<a<2 (ElYi|" < oo, E|Ys2|" < oo for 0 < r < a), we define [2]

FLOC(Y1, Y2; A, B) = E[Y1<A> Y2<B>]7

where x<¢~ = |x|“ sgn x, and A>0, B>0, A+ B < a.

Fractional lower-order moment (FLOM): alternative to variance
FLOM(Y1; A, B) = FLOC(Y1, Y1; A, B) = E| Y1 |A1B.

Example of infinite-variance dist. — symmetric a-stable distribution
with stability index « € (0, 2] and scale parameter o > 0:

X ~ SaS(a,0), Eexp(izX) = exp(—c®|z|%).



FLOC-cyclostationary time series

Recall the classical definition of PC time series.

Definition (Periodically correlated (PC) time series)

A finite-variance time series {X:}, t € Z, is PC if for all t,h € Z

]EXt = ]EXt+T, COV()(t7 Xt+h) = COV(Xt+T, Xt+h+T)'

To define an analogue of the PC property for infinite-variance case,
we replace the autocovariance with its FLOC-based counterpart.

Definition (FLOC-cyclostationary time series)

A time series {X;} (for which given FLOC exists) is said to be
FLOC-cyclostationary, if for all t, h € Z

EXt = EXt+Ta FLOC(Xt,Xt+h; A, B) = FLOC(Xt+T, Xt+h+T; A, B)




Periodic fractional lower-order white noise (peFLOWN)

A basic example of PC time series is periodic white noise (peWN).

Definition (Periodic white noise, peWN)

A finite-variance time series {X;} is peWN with period T if for
each t € Z and h e Z\ {0}

EXt = O, Var(Xt) = Var(Xt+T), COV(Xt, Xt+h) =0.

Analogously, as a basic FLOC-cyclostationary time series, we can
define the periodic fractional lower-order white noise (peFLOWN).

Definition (Periodic fractional lower-order white noise, peFLOWN)

A time series {X;} (for which given FLOC/FLOM exist) is said to
be peFLOWN with period T if for each t € Z and h € Z \ {0}

EX, =0, FLOM(X;;A, B)=FLOM(X.s7:A, B),

FLOC(Xt, Xt+h; /47 B) =0.

™7 g =




PAR and PMA models

Definition (Periodic autoregressive (PAR) model)
A time series {X;} is PART(p) if for every t € Z we have

Xt - ¢)1(t)Xt—1 e ¢p(t)Xt—p = fty

where {&;} is peFLOWN, and coefficients {¢;(t)} are T-periodic in t.

v

Definition (Periodic moving average (PMA) model)

A time series {X;} is PMA7(q) if for every t € Z we have

Xe =&+ 01(t)&—1+ ...+ 0g(t)&e—q-

where {&;} is peFLOWN, and coefficients {6;(t)} are T-periodic in t.

v

p(t), q(t) — "local” orders (i.e., "actual” orders at time t, also T-periodic)

p(t)=max{i : i=1,...,p, ¢i(t) #0}, q(t)=max{j : j=1,...,q, 0;(t) # 0}.



FLOC-cyclostationary time series
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Digression: autodependence measures for PC processes

For a zero-mean PC time series {X;}, the periodic autocovariance
function (peACVF) is given by

"Yv(h) = COV(XnT+va XnTJrvfh) = IE[)<nT+v)<nT+vfh]a nez.

One can also consider the normalized version of peACVF, that is,
the periodic autocorrelation function (peACF) given by [3]

Pv(h) — Cov < XnT+v XnT+v—h ) _ ’Yv(h)

\/Var(XnT—i-v)’ \/V3r(XnT+v—h) V 7v(0)7v—h(0) '

In other words, p,(h) is the covariance between X7, and
XnT+v—h standardized to have unit variance.



Digression: autodependence measures for PC processes

Another dependence measure considered for PC processes is the
periodic partial autocorrelation function (pePACF).

For a zero-mean PC time series {X;}, pePACF §,(h) is defined as
the last component of the vector ¢, j, given by [4]

¢v,h = (Rv,h)i1 Pv,h;
where R, ; (assumed to be non-singular) is h x h matrix defined as

(Run)ij=pv—j(i—1Jj), i,j=1,...,h,

and
Pv,h = [pv(1)7 o 7/)\/(/7)]/-

note: in the literature, there are several conventions of defining pePACF



New autodependence measure: peFLOACF

For FLOC-cyclostationary {X;}, we first define the periodic
fractional lower order autocovariance function (peFLOACVF) as [5]

¢v(h) = FLOC(XnT+V, XnTJrvfh; A: B) = E[Xn<7/'4+>vXn<TB+>vfh .

which is a FLOC-based counterpart of peACVF.
Then, we define its normalized version — periodic fractional

lower-order autocorrelation function (peFLOACF) — as FLOC
between X,7+, and X,74+,_p standardized to have unit FLOM.

The peFLOACF is a FLOC-based counterpart of peACF.



New autodependence measure: peFLOACF

For a FLOC-cyclostationary {X;}, peFLOACF is defined as

XnT+v XnT+v—h_ > ¢v(h)
v h) = FLOC s .A7 B|= A B
A0 e o(0) P n(0) o

where s(t) = (1/1,5(0))/\%5 is the standardizing factor for given X;.
If A= B, then the peFLOACF simplifies to

bih)
V¥ (0)y—n(0)

77v(h) =

Note: peFLOACF has a cut-off property for PMA+(q) models

nv(h) =0 for |h| > q(v).



New autodependence measure: peFLOACF
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PeFLOACF 7, (h) values (A = B = 0.8) for selected
FLOC-cyclostationary models with period T = 2.
Model 1: peFLOWN, Model 2: PAR>(1), Model 3: PMA;(1).



New autodependence measure: peFLOPACF

The periodic fractional lower-order partial autocorrelation function
(peFLOPACF) is a FLOC-based counterpart of pePACF.

For FLOC-cyclostationary {X;}, the peFLOPACF ¢, (h) is defined
as the last component of the vector ¢, , given by (A= 1)

bvp = (Hyp) ' 1u i,
where H, ; (assumed to be non-singular) is of elements
(Hyn)ij =mv—j(i—=J), i,j=1,...,h
and
M= (1), nu(h)]".
Note: peFLOPACF has a cut-off property for PAR7(p) models
Cv(h) =0 for h> p(v).



New autodependence measure: peFLOPACF
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PeFLOPACF ¢, (h) values (B = 0.6) for selected
FLOC-cyclostationary models with period T = 2.
Model 1: peFLOWN, Model 2: PAR>(1), Model 3: PMA;(1).



Sample peFLOACF and peFLOPACF

For a sample x1, ..., xy7, the sample peFLOACVF is defined as

. 1 &
_ <A> <B>
wv(h) - N XnT+vXnT+v—h'

n:lb
Then, the sample peFLOACF is given by
_ by (h)
- - A~ B_-
%(0) AtE wv—h(o) A+B

fv(h)

The sample peFLOPACF CAV(h) is constructed by replacing all terms
nv(h) in the peFLOPACF definition with corresponding 7j,(h).

note: Ip, rp, — sum bounds for which the indices nT + v and nT + v — h are always between 1 and NT



Testing of dependence for FLOC-cyclostationary time series

Using peFLOACF, we design a portmanteau test for detecting
dependence in FLOC-cyclostationary time series {X;}
(adapting the peACF-based test for PC time series [6]).

Ho : { Xt} is peFLOWN,  Hj : {X;} is not peFLOWN.

We perform a 'subtest’ for each v =1,..., T, with the following
'subtest’ statistic for given v

ky =N Z (ﬁV(h))2a

heH+
where Hy = {—hmax, - - -, hmax} \ {0}, for some assumed hmay.

If for any v the value of x, is "atypically large”, dependence is
present in the analyzed series.



Testing of dependence for FLOC-cyclostationary time series

Procedure for dependence testing in sample xi, ..., xy7 that
corresponds to a FLOC-cyclostationary and SasS time series {X;},
for assumed « and significance level c:

e Find the critical region for each subtest (assuming v = 1):

o Generate M i.i.d. sequences of length NT from SaS(«,1).
e For j-th trajectory, calculate x, denoted as mf,').
o Construct the critical region (Q_z,00), where & = ¢/ T, and

@1_¢ is the quantile of order 1 — & of [/{S,l), cel mf,M)].
@ Foreachv=1,..., T, perform the subtest:
e From xq,...,xyT, calculate x, denoted as Kso)_

o If nso) € (Qr—z,00), Ho is rejected.



Testing of dependence for FLOC-cyclostationary time series
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Empirical powers of both subtests and the entire portmanteau test for different values
of ¢1(1) and ¢1(2) in PAR2(1) model in alternative hypothesis H1,
calculated for trajectories of length NT = 1000.



Order identification for infinite-variance PAR model

Using the cut-off property of peFLOPACF, we design a procedure
for infinite-variance PAR model order identification.
(adapting the pePACF-based method for finite-variance PAR [7])

Foreach v=1,..., T, we look for the largest argument h for
which the sample peFLOPACF (¢, (h) is "significantly non-zero"*.

This argument is then the identified "local” order p(v) for given v.

The "global” order p can then be derived as the maximum of all
seasonal orders p(1),...,p(T).

* according to the confidence interval for fv(h) for peFLOWN series obtained using
Monte Carlo simulations



Order identification for infinite-variance PAR model
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Percentage of cases with correctly identified p(1), p(2) and both p(1), p(2) for
different values of ¢1(1) and ¢1(2) in PAR2(1) model,
for trajectories of length NT = 1000.



Order identification for infinite-variance PMA model

Using the cut-off property of peFLOACF, we design a procedure
for infinite-variance PMA model order identification.
(adapting the peACF-based method for finite-variance PMA [3])

For each v=1,..., T, we look for the smallest non-negative
integer k for which the sample peFLOACF 4}, (h) is " close to
zero"* for all h < —k and h > k.

This argument is then the identified "local” order g(v) for given v.

The "global” order g can then be derived as the maximum of all
seasonal orders g(1),...,q(T).

* according to the confidence interval for ), (h) for peFLOWN series obtained using
Monte Carlo simulations



Order identification for infinite-variance PMA model
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Air pollution data analysis

Analyzed data: preprocessed daily average PMyg in Vitéria, Brazil.

Vitéria (center) - transformed data
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Assumptions: T =7 (weekly rhythm), o = 1.9.



Air pollution data analysis
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Sample peFLOACF #,(h) (with A= B =0.85) for v=1,..., T for the analyzed
dataset with confidence intervals at 95% and 99% levels.



Air pollution data analysis

[$0)

&0

95% confidence interval
99% confidence interval

*0)

Sample peFLOPACF {, (h) (with B =0.7) for v =1,..., T for the analyzed dataset
with confidence intervals at 95% and 99% levels.



Air pollution data analysis

Subtest statistic values of the portmanteau test for the dataset:

v 1 2 3 4 5 6 7
Ky | 864.3 | 648.4 | 630.0 | 607.7 | 562.1 | 905.3 | 436.4
[ critical region [ (458.9, c0) ]

We fit the a-stable PAR7(3) model to this dataset (with order
identified using the proposed method).

Subtest statistic values of the portmanteau test for the residuals:

v 1 2 3 4 5 6 7
Ky | 403.3 | 254.6 | 292.7 | 287.1 | 354.9 | 450.2 | 320.6
[ critical region [ (458.9, 00) ]

Stability index value estimated from residuals: « = 1.89.



Air pollution data analysis
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Sample peFLOACF #,(h) (with A= B =0.85) for v =1,..., T for the residuals of
the fitted PAR model with confidence intervals at 95% and 99% levels.



Air pollution data analysis
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Sample peFLOPACF (,(h) (with B =0.7) for v =1,..., T for the residuals of the
fitted PAR model with confidence intervals at 95% and 99% levels.



Summary

@ In this presentation, the class of FLOC-cyclostationary time
series (generalization of PC time series) was analyzed.

@ For these processes (which may have infinite variance), the
periodic structure is described using FLOC measure.

@ For the analysis of FLOC-cyclostationary processes, the
peFLOACF and peFLOPACF measures were introduced.

@ Moreover, using these measures, the procedures for
dependence testing and order identification were designed.

@ The applications to simulated and real data indicate that the
proposed methodology is efficient and useful in practice.
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