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Abstract

Abstract

Main goals of the talk:

@ Presenting cyclostationary signals

@ Models for cyclostationary signals, resampling, mechanical
signals

@ Functional models
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The data structures

Motivating example

Engine signal (Lafon, Antoni, Sidahmed, Polac, Journal of Sound
and Vibration (2011))

Fig. 1. Example of three cycles of a cyclostationary acoustical signal recorded in front of a 4-cylinder engine under steady operating conditions
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The data structures

Motivating example

Wheel bearing signal - normally operating and inner race default
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The data structures

Motivating example

Brown coal (lignite) excavating machine
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Autocovariance surface for mechanical signals
Resampling methods for APC models

APC models, estimation N P
Resampling in applications

Definition of nonstationary APC time series

We say that {X (t); t € Z} - APC, when ux (t) = E (X¢) and the
autocovariance function

BX (t, T) = COV (Xt, Xt+7—)

are almost periodic function at t for every 7 € Z.
Function f is almost periodic in the norm |-|| if
for each € there exists an almost period P. such that

IF(-+P) = FO)Il < €
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Autocovariance surface for mechanical signals
Resampling methods for APC models

APC models, estimation N P
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Inference for APC

If {X(t); te€Z}-APC then

px (t) = E(Xt)
and the autocovariance function

Bx (t,7) =Y a()7)e

AEA

Assume for simplicity that pux (t) = 0). Then

n—rt

ZX t+7)X(t)e ™

an(\,7) =

n—rT

Given some mixing assumptions 3, (A, 7) is asymptotically normal.
Variance-covariance matrix is very complicated.
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Autocovariance surface for mechanical signals
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APC models, estimation N P
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Theorem - Dehay, Dudek, Leskow (2014))

Consider the following conditions:

(A1) sup, E {|X(t)|[**} < oco for some § > 0, the fourth moment is almost periodic
in the following sense : the function
v i cov{X(u+ v+ 7)X(u+ v),X(v+ 7)X(v)} is almost periodic for each u.
Moreover the process X is a-mixing and the mixing coefficient satisfies
I8 ax(t)0/4+9) dt < oo,

(A2) For each X € A the following separability property is fulfilled

>

A eM{A}

a(\,7)
X=X

< o0

Under the following conditions we have

VT{ar(A\ 1) — a(h, 7)) == N2 (0, V(A, 7).

where the limiting V is very complicated!
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Autocovariance surface for mechanical signals
Resampling methods for APC models
Resampling in applications

APC models, estimation

Ball bearing signals

Properly working ball bearing

autocovariance structure

lar(a, )| xi0t

WM W/W\M

Jacek Leskow FDA, PFAR




Autocovariance surface for mechanical signals
Resampling methods for APC models
Resampling in applications

APC models, estimation

Ball bearing signals

Ball bearing with rolling element damaged

autocovariance structure
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Autocovariance surface for mechanical signals
Resampling methods for APC models

APC models, estimation e e AL
Resampling in applications

Resampling for time series

Quick facts:

@ Nonparametric bootstrap - useless, as it destroys the
longitudinal structure

e Stationary time series: moving block bootstrap (MBB)

e Cyclostationary time series: periodic block bootstrap (PBB),
seasonal block bootstrap (GSBB), circular versions of MBB
and GSBB, subsampling

@ asymptotic independence: mixing or weak dependence
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Autocovar

nce surface for mechanical signals
. . Resampling methods for APC models
APC models, estimation pang I P

Resampling in applications

Resampling in practice

Typical cyclostationary signal analysis.
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Model PFAR(1)

Assumptions

Bootstrap
Functional approach Mechanical signal

PFAR(1) model

In our considerations we will assume that the observed signal
[X(s): s € [0,5]}
can be represented by a sequence of random functions (curves):

{20):-- Zn()}

Since we are going to work with cyclostationary signals, we will
assume that these curves are correlated and are repeatable that is
there is a period T such that Z,7, will be similar to Z,_1)74,
for all n > 1 and for each v, where v =1,..., T. The sense of this
similarity will be specified later.
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Model PFAR(1)

Assumptions

Bootstrap
Functional approach Mechanical signal

Model space

Without a loss of generality, we will assume that the random
functions Z;(s) are defined on a common interval [0,1] so s € [0, 1]
throughout our presentation.

Without a loss of generality, we will identify # with L2[0,1]. We
will also use the symbol ® to denote the linear operator on H with
values in #, that is & € L£(H,H). On the Hilbert space L(H,H)
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Model PFAR(1)

Assumptions

Bootstrap
Functional approach Mechanical signal

We will say that the functional time series {Z;, i > 1} fulfills the
PFAR(1) model if for each i = nT + v with v =1,... T we have

ZnT+y = d)u(ZnT—i-(z/—l)) + EnT+v- (1)J

In the model (1) the operators ®,,v =1,..., T are
Hilbert-Schmidt integral operators in L% with corresponding kernels
¢, fulfilling the assumption

o, (x)(t) = /qﬁl,(t, s)x(s)ds.

Moreover, the sequence ¢; is a sequence of i.i.d. mean zero
elements in H.
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Model PFAR(1)

Assumptions

Bootstrap
Functional approach Mechanical signal

Estimator

The estimator is based on the first p functional principal
components and has the form:

~ 1 P R
b, n(x) = Z)\,,’}<X777u,j><ZkT+1/777u,j>ZkT+y+1 (3)
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Model PFAR(1)

Assumptions

Bootstrap
Functional approach Mechanical signal

Assumptions

The statistical inference in our PFAR model will be based on the
following assumptions .

Assumption Al

There exists an integer jo such that for each v,v =1,..., T we
have ||®%]|, < 1.

The assumption provides the causal representation for our periodic
time series {Z,74,} in the following form

nT+1/ Z(DJ 6”T+V—J) V= 17"'7 e (4)
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Model PFAR(1)

Assumptions

Bootstrap
Functional approach Mechanical signal

Assumptions

Assumption A2

Assume that for each n and v we have E||Z,74,||* < oo.
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Model PFAR(1)

Assumptions

Bootstrap
Functional approach Mechanical signal

Assumptions

Assumption A3

Assume that for n — co we have that p — oo but lim,_ % =0.

The condition means that the number of principal components
grows with the growth of the sample size but the rate of growth is
slower than the growth of the sample.
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Model PFAR(1)

Assumptions

Bootstrap
Functional approach Mechanical signal

Mean square constistency

Theorem

Let the sequence Z,7., follow the model (1) and let assumptions
A1, A2 and A3 be fulfilled. Let the sequence of random operators

~

®,, , be defined in (3). Then, the following holds true:
(i) E|®,,— > =0(n"") foreachv=1,..., T,
(ii) E||fyn—m||>=0O(n71) foreach v=1,..., T,

(i) EAn— A2 =0(n1) foreachv=1,...,T.
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Asymptotic normality

Theorem

Let the sequence Z,1., follow the model (1) and let assumptions
Al, A2 and A3 be fulfilled. Then

N d
Vn(Aun—A) — N(0,0,),
where AV/(0,0,) is a univariate normal distribution with the mean

zero and the standard deviation o,,. The symbol 9 denotes the

convergence in distribution and ), is the eigenvalue of the operator
M.
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Model PFAR(1)
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Bootstrap
Functional approach Mechanical signal

Bootstrap algorithm

Step 1. Vector stationarization of Z;

Let Zp = (Zy741,-- - ,Z,,T+T)’. Since Z; follows the PFAR(1)
model thus Z, is T-variate stationary. Let A, , be the estimates of
the theoretical eigenvalues A\, based on a sample Z;,...,Z,.
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Model PFAR(1)

Assumptions

Bootstrap
Functional approach Mechanical signal

Bootstrap algorithm

Step 2. Creating the first MBB resample

Assume that n = kb and let {Bj, ..., Bk} be the nonoverlapping
blocks of the length b covering Z1,...,Z,. We sample with
replacement k blocks {B;!,..., B}'} to get the first MBB
resample Z31,...,Z*! and the first resample 3\";1,,

Step 3. Getting L replicates

Repeat Step 2 L times to get L replicates X;’i}n, e ,5\*’- .
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Bootstrap
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Consistency

Using the procedure described above we arrive at the following
consistency theorem.

Theorem 4

The confidence intervals derived from the MBB replications
AL, AxL, are asymptotically consistent that is for each

v=1...,T

P{>\v € (qa/2(L7 V)v ql—a/2(L7 V))} —1 -a

where g, /2(L, ) is the a/2-quantile generated by the bootstrap

sample A,ﬁ}n, ey )\;Ln. The convergence is for n — oo under the

assumption of stationarity and a-mixing.
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Bootstrap
Functional approach Mechanical signal

Description of the data

We will analyze now another cyclostationary signal that is
generated by the wheel bearing. We have a signal corresponding to
10 seconds of the wheel bearing operation, the frequency being 2,5
kHz. Having, therefore, 25000 time data points we have divided
them into 50 equal segments with 500 data points in each segment.
Therefore, each second contained 5 segments with periodicity
observed between first segments of each second, second segment of
each second and so on. Our choice is motivated by observed
periodicity among data grouped into 50 segments.
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Functional approach

Model PFAR(1)
Assumptions
Bootstrap

Data organized into segments

Mechanical signal

‘segment 1 segment 2 segment 3 segment 4 segment 5
segment 6 segment 7 segment 8 segment 9 ‘segment 10

segment 11

segment 12

segment 13

segment 14

segment 15
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The segments with numbers 1,6,11 and so on look pretty much
alike. The same can be said about segments with numbers 2,7,12
and so on. Clearly, we have periodicity equal to 5 and we can treat
the data as the periodic functional time series with the period
length 5. We will therefore group data according to columns and
perform the estimation procedure using PFAR(1) model. We will
have therefore five groups of curves. The first group contains 10
first segments of each of second, the second group contains the 10
second segments and so on.
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First group eigenvalues

eigenvalue | block bootstrap (k =5,n=2,L =1000) | CPV
0.006410 | 6.410022-103 15.042201 - 1073 21%
0.005281 | 5.037865-1073 8.210638 - 103 37%
0.004496 | 3.334865-103 6.538219 - 103 52%
0.004096 | 1.476030 - 1017 4.322919 - 1073 65%
0.003605 | 1.234785-10"17 3.604941 1073 76%
0.002478 | 9.018584 - 1018 2.555049 - 103 84%
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First group diagnostics
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Model PFAR(1)
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First group model fit
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Second group eignevalues

eigenvalue | block bootstrap(k =5,n =2, L = 1000) | CPV
0.005929 | 5.929743-1073 13.553896 - 1073 19%
0.005410 | 5.082175-1073 8.584699 - 103 35%
0.005081 | 3.424612-103 6.624032 - 103 51%
0.003749 | 1.548226-10"17 4.429500 - 103 63%
0.003033 | 1.262034-10"17 3.452723 .10 3 73%
0.002640 | 9.301247 -10°18 2.730186 - 103 81%
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Second group diagnostics
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Second group model fit
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Third group eignevalues

eigenvalue | block bootstrap (k =5,n=2,L =1000) | CPV
0.008586 | 7.377949-10° 15.318479 - 1073 29%
0.004144 | 4.141210-103 7.915194 - 1073 43%
0.004021 | 2.876588-103 5.730514 - 103 56%
0.003285 | 1.136990 - 10~ 17 4.039814 - 1073 67%
0.002625 | 9.868712-10"18 2.934986 - 103 76%
0.002261 | 7.633720-10"18 2.431313-1073 84%
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Third group diagnostics

corr=-8.30-05 corr=5940-05 cor=7.560-05 con=220-05 com=0.0001020
- o " >
. . -1 ¥ B B
++- - *
o o - A1 - o~
g Y 7 - ; 5
0 200 500 202 202

2 1
*
*
g
-0.15 0.0
1
113
2 0

20 2 0 200 500 20 2 2
corm=5.940-05 com=0.0003776 com=-0000344

com=220-05

-0.15 010

Jacek Leskow FDA, PFAR



Model PFAR(1)

Assumptions

Bootstrap
Functional approach Mechanical signal

Third group model fit
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Thanks for your
attention!
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